Refine Your Search

Topic

Search Results

Technical Paper

A Study on Optimization of the Cross-Section of Door Impact Beam for Weight Reduction

2020-04-14
2020-01-0631
This paper focuses on the optimization of the cross-section of a panel type impact door beam. The key parameters of the cross-section of the beam were artificially changed by using a geometry morphing tool FCM (Fast Concept Modeler), which is plugged in to CATIA. Then, the metamodel of FE (Finite Element) analysis results was created and optimized using LS-OPT. The ANOVA (Analysis of Variance) analysis of results was carried out to find the factor of weight reduction. Finally, a new cross section concept was proposed to overcome the limitation of old structure. The optimization was carried out for the beam with the final cross-section to have 10 % or more reduction in total weight.
Journal Article

A Study on the Role of TRIZ in DFSS

2012-04-16
2012-01-0068
The Design For Six Sigma (DFSS) process consists of four phases, identification & definition of opportunity, concept development, design optimization, and design verification. In the phase of concept development, TRIZ (Russian acronym for Theory of Inventive Problem Solving) is useful for creating new ideas from the present ideas, which includes the trimming strategy, the antidote strategy, and the picket fence strategy. In this paper, systems of a vehicle such as Variable Compression Ratio (VCR) engine, windshield wiper blade, and Continuously Variable Valve Actuation (CVVA) of engine, are selected and new concepts for each system are created by applying the previously mentioned three strategies. FMEA (Failure Mode and Effects Analysis), the latter part in the phase of concept development in DFSS, is conducted for newly generated concepts of systems that are mentioned above. As a result of FMEA, it is found that the wind lift of the wiper blade can be a serious problem.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Modeling of Door Slam Noise Index by using Sound Quality Metric

2007-05-15
2007-01-2394
Door slam noise is very important sound, because Door Slam noise gives a big effect in high-class feeling of vehicle and brand identity. But it is very difficult to analyze door slam noise by traditional analysis and overall sound level. Moreover, the short occurrence time of Door Slam noise makes the analysis more difficult. In this paper, we used the latest developed sound quality methods for analyzing Door Slam noise. And we had performed jury test for luxury vehicles. After that we had carried out correlation analysis between objective analysis and subjective test. Finally, we could suggest Door Slam noise Index by linear regression analysis.
Technical Paper

An Ergonomic Investigation for Control Types and Menu Design Types of In-Vehicle Information System (IVIS)

2007-08-05
2007-01-3514
The purpose of the study is to investigate the ergonomic issues for control types and menu design types of in-vehicle information system (IVIS). The results showed that 1) linear-type controls with linear-type menu design had better performance 2) rotary-type control with rotary-type menu design had good subjective preference score 3) the performance and subjective preference of IVIS interface were strongly influenced by the compatibility between control types and menu design types of IVIS 4) there was a tendency that the performance of IVIS tasks was better when the display was located at higher level on center fascia. The results can be applied to develop a new control and menu design of IVIS from ergonomic view points.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

Minimizing the Rattling of Door Glass

2017-03-28
2017-01-0443
Significant effort has been expended to improve the sound made by a closing car door. This study focuses on reducing door glass rattle sounds, not only evaluating the rattle influence of door glass support but also introducing an approach to reduce glass rattle noise by using sealing components. The first part of the study is dedicated to minimizing vibration. A jig is constructed to evaluate the influence of a door glass support on the rattling. The jig is employed so that the glass meshing between the A and B pillars can be controlled; the glass holder moves in the x- and z-directions and the belt molding moves in the y-direction. An impact hammer test was adopted for investigating door glass rattle. The frequency response obtained via impact hammer testing is analyzed by varying the glass support points and important factors that should be considered in early design stages are obtained. The second study is about optimizing vibration absorption.
Technical Paper

Development of Crash Performance of the Front Bumper System by Adopting Target Cascading Scheme

2018-04-03
2018-01-1054
A practical application of the Target Cascading scheme for the development of the front bumper system of a passenger car is investigated in this paper. The Target cascading in the crash performance of vehicle developments requires a systematic approach, propagating from the desired vehicle-level performance target to appropriate specifications in a system- and/or component-level. To define the values of design specification in the front bumper system, three physical variables are derived by analyzing the vehicle-level performance of the frontal impact under the high-speed (56kph NCAP frontal impact) and the low-speed (15kph RCAR structural test) crash conditions. To ensure the sequential deformation in the high-speed frontal impact and to minimize the damage of the structural member in the low-speed crash, the maximum collapse load of a crash box should be smaller than the collapse load of a front side member.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study to Reduce the Minimum Distance of the Vehicle Sensor’s Detecting Range Using a Prior Estimation Method

2022-03-29
2022-01-0072
As autonomous driving vehicles are developed, automotive makers start focusing on implementing new door types, such as a falcon wing door or a B-pillarless dual sliding door, which could be one of the best-selling points. To make these doors electrically operate, applying advanced sensors like a RADAR or an Ultrasonic sensor is almost mandatory. Without these sensors, the door could be easily damaged or the customers could be seriously injured. Due to physical limitation, however, every sensor has a noise in nearby area and has a specification of the minimum detection range, which causes us not to be able to precisely detect the object in close area. If the controller cannot detect the precise distance of the object, the door could malfunction, since it could misidentify the obstacles. In this paper, we propose a method to reduce the minimum detection range by applying a prior estimation scheme.
Technical Paper

A Development of Smart Ventilation System

2015-03-10
2015-01-0018
There are some problems “windows fog up a lot” for ventilation system. We have Test Development Procedure to prevent the fog problems. But, Many fog problems occurred in the cars that we made. So in this paper, new ventilation system is needed and developed. The Smart Ventilation System automatically controls indoor air quality even though the blower motor is off. There are two sensors that is used for AutoDefogSensor system and CO2 CONTROL system.. The sensor is on when blower motor and heater control is off. We use these signals and make new ventilation logics. We evaluate this system in chamber & '13 winter test in USA.
Technical Paper

A Study on Prediction of Door Deformation in High Speed Passenger Vehicle at Cross Wind

2015-03-10
2015-01-0010
In this study, several design factors are considered to predict door deformation. Door deformation is mainly influenced by air flow around A-pillar and door static stiffness. Therefore design factors can be divided into two categories. First, design elements determined by the appearance of a car affect to the air flow around A-pillar. Second, door static stiffness is determined by engineering design parameters. Kriging method is used to predict door deformation by means of the design factors. Door deformation can be successfully predicted with this method.
Technical Paper

Re-design of Power Sliding Door Pulley System

2015-04-14
2015-01-1312
The power sliding door system(PSD) is being equipped in the MPV(Multi-Purpose Vehicle/minivans) vehicle for convenience in the door operation. This study will focus on package space optimization for interior design and overall vehicle packaging for the vehicles equipped with PSD. To optimize the package, investigation for PSD's structure need to be done and the examples of other vehicle maker will be investigated and compared. The study that considers performance and package requirements resulted in a unique PSD design. And finally, this study will show the result vehicle in which the optimized mechanism is applied.
Technical Paper

The Study of Optimization of Sliding Door Effect

2019-03-25
2019-01-1425
A sliding door system is one of the vehicle door types, which is generally applied to the MPVs. The Sliding door is contains three rails (an upper, a center, and lower rail), which are mounted on body structure, and three rollers (the upper roller, the center roller, Lower roller), which are mounted on the sliding door side. The system is different from a swing door, rotated by hinge axis. To set up sliding door layout for better performance, predict operating force is one of the main factors, But The door moving trace is on three-dimension, hard to calculate and predict. So in this study, it is an object to analyze the impact between the main factors affecting the performance of the closing and open performance and the sliding door through the study formula and a layout scheme for ensuring the best operating performance of the sliding doors.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Technical Paper

A Development of the Prediction and Optimization Tool for Wiper High Speed Performance

2019-03-25
2019-01-1417
In this paper, we focused on the robust wiping performance of high speed driven condition as an important situation for vehicle safety. Frist, we selected appropriate wiper performance parameter to accurately predict its ability not only systematic point but also vehicle point. Second, we obtained parameter sensitivity of wiper high-speed performance using DFSS technique. Third, we developed prediction and optimization tool using commercial program; Excel and Visual Basic. Finally, we improved our tool to compare vehicle test and then modified prediction coefficient for the accuracy of tool. Thus, we proposed a systematic tool to predict wiping performance in high speed vehicle, and successfully obtained efficiency when we developed the new project’s wiper performance.
Technical Paper

A Study of Design Methodology to Develop Improved Door System of a Vehicle

2019-04-02
2019-01-0616
In the past few years, technological innovations in the automobile industry took vehicle performance to the next level. One such innovation is frame integrated panel door. This type of door helps automobile companies to have the advantages of both conventional panel and frame type doors. Though it has a good number of advantages, there are some drawbacks too. It requires improvements in its quality, NVH performance, weight and etc. Quality of a door is low due to the limitations in structural design and manufacturing technologies. And it is difficult to have a robust structure which leads to degradation of key performing factors such as NVH. For a lightweight vehicle, it is important to design an optimized structure for saving weight, without compromising its performance. In order to overcome these drawbacks a new optimized design structure is required for door system.
X