Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Development of a Semi-Active Suspension Controller Using Adaptive-Fuzzy with Kalman Filter

2011-04-12
2011-01-0431
Following the developments in controlled suspension system components, the studies on the vertical dynamics analysis of vehicles increased their popularity in recent years. The objective of this study is to develop a semi-active suspension system controller using Adaptive-Fuzzy Logic control theories together with Kalman Filter for state estimation. A quarter vehicle ride dynamics model is constructed and validated through laboratory tests performed on a hydraulic four-poster shaker. A Kalman Filter algorithm is constructed for bounce velocity estimation, and its accuracy is verified through measurements performed with external displacement sensors. The benefit of using adaptive control with Fuzzy-Logic to maintain the optimal performance over a wide range of road inputs is enhanced by the accuracy of Kalman Filter in estimating the controller inputs. A gradient-based optimization algorithm is applied for improving the Fuzzy-Logic controller parameters.
Journal Article

Improvement of Heavy Vehicles Ride and Braking Performance via Combined Suspension and Braking Systems Control

2011-04-12
2011-01-0437
Due to the importance of the fast transportation under every circumstance, the transportation process may require a high speed heavy vehicle from time to time, which may turn the transportation process more unsafe. Due to that fact the truck safety during braking and the ride comfort during long distance travelling with high speeds should be improved. Therefore, the aim of this work is to develop a control system which combines the suspension and braking systems. The control system consists of three controllers; the first one for the active suspension system of the truck body and cab, the second one for the ABS and, the third for the integrated control system between the active suspension system and the ABS. The control strategy is also separated into two strategies.
Journal Article

The Influence of Damper Top Mount Characteristics on Vehicle Ride Comfort and Harshness: Parametric Study

2012-04-16
2012-01-0054
The current paper addresses the relationship between the damper top mount characteristics and the ride comfort and harshness of a vehicle. A detailed mathematical damper top mount model which can simulate the vertical force characteristics of damper top mounts is developed and verified with actual tests. The amplitude and frequency dependent parameters of the damper top mount model are extracted from experimental testing of a commercial damper top mount. In order to identify the model parameters, a new procedure based on a two-stage optimization routine using two sets of measurement data for the amplitude and frequency dependent parameters is proposed. The damper top mount model is validated by comparing the measured force of the damper top mount with the simulated force of the proposed model. The developed top mount model is then implemented into a quarter vehicle simulation model for studying the influence of damper top mount characteristics on vehicle ride comfort and harshness.
Technical Paper

An Investigation of Anti-lock Braking System for Automobiles

2012-04-16
2012-01-0209
Nowadays, the anti-lock braking system, briefly ABS, is an important component in modern cars. Therefore, in this paper the one of the intelligent control theories “Fuzzy Logic Control” is suggested to create two different ABS controllers. The braking performance was examined theoretically using half vehicle model. The suspension system model, tire-road interface model and anti-lock braking system model are included in the model. The influence of vehicle initial speed and tire-road friction coefficient is investigated. The simulation results of the proposed controllers are compared with the conventional ABS controller and the Conventional Brake system. The results showed that, using Fuzzy Logic Control in ABS improved the braking performance than the conventional ABS. Furthermore, the improvement in the braking performance using fuzzy logic control is obtained without any additional sensors, which leads the controller to be more realizable for the industry application.
X