Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Technical Paper

NVH-Development of Electric Powertrains - CAE-Methods and NVH-Criteria

2014-06-30
2014-01-2072
Electric cars are getting popular more and more and the expectations of the customers are very challenging. Concerning comfort, the situation is clear: customers want an electric car to be quiet and without any annoying noise from the powertrain. To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have an accurate CAE-simulation and precise criteria to assess whining noise. Based on the experience with electric powertrains in research cars the CAE-modelling was improved and a new ‘whining intensity factor’ was acquired for the development of Daimler's electric cars. The results are a very low noise level and a minimized whining noise, nearly not noticeable giving a comfortable sound to the customers of the smart electric drive and the B-Class Electric Drive.
X