Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental and Numerical Investigation of a Lean SI Engine To Be Operated as Range Extender for Hybrid Powertrains

2021-09-05
2021-24-0005
In the last few years, concern about the environmental impact of vehicles has increased, considering the growth of the dangerous effects on health of noxious exhaust emissions. For this reason, car manufacturers are moving towards more efficient combustion systems for Spark Ignition (SI) engines, aiming to comply with the increasingly stringent regulation imposed by EU and other legislators. Engine operation with very lean air/fuel ratios has demonstrated to be a viable solution to this problem. Stable ultra-lean combustion can be obtained with a Pre-Chamber (PC) ignition system, installed in place of the conventional spark plug. The efficiency of this configuration in terms of performance and emissions is due to its combustion process, that starts in the PC and propagates in the main chamber in the form of multiple hot turbulent jets.
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Experimental Characterization of Nanoparticles Emissions in a Port Fuel Injection Spark Ignition Engine

2011-09-11
2011-24-0208
In the recent years, growing attention has been focused on internal combustion engines, considered as the main sources of Particulate Matter (PM) in urban air. Small particles are associated to fine dust formation in the atmosphere and to pulmonary diseases. The legislation proposes a stronger restriction in terms of particulate mass concentrations for both Diesel and gasoline engines and a limitation on number concentration. Unfortunately, the experimental evaluation of particles number and size is a hard task as they are strongly affected by the dilution conditions, due to condensation and nucleation phenomena, which may occur during the sampling. Even if a considerable amount of basic research on particulate matter emitted by engines has been carried out, the mechanisms governing particle formation are still not fully understood, neither for Diesel nor for gasoline engines.
X