Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine

2014-04-01
2014-01-1397
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

Effects of Charging System Variability on the Performance and Fuel Economy of a Supercharged Spark-Ignition Engine

2015-04-14
2015-01-1286
The paper discusses the effects of various charging system technologies on the performance and fuel consumption of a modern supercharged engine, the Jaguar Land Rover AJ126 3.0 litre V6. The goal of the project was to improve performance and reduce the fuel consumption of the standard engine by researching new technologies around the supercharger. As standard the AJ126 engine uses an Eaton R1320 supercharger with a fixed ratio drive from the crankshaft and no clutch.
X