Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Modeling and Experimental Studies of Crack Propagation in Laminated Glass Sheets

2014-04-01
2014-01-0801
Polyvinyl Butyral (PVB) laminated glass has been widely used in automotive industry as windshield material. Cracks on the PVB laminated glass contain large amount of impact information, which can contribute to accident reconstruction investigation. In this study, the impact-induced in-plane dynamic cracking of the PVB laminated glass is investigated. Firstly, a drop-weight combined with high-speed photography experiment device is set up to investigate the radial cracks propagation on the PVB laminated glass sheet. Both the morphology and the velocity time history curve of the radial cracks are recorded and analyzed to investigate the basic mechanism of the crack propagation process. Afterwards, a three-dimensional laminated plate finite element (FE) model is set up and dynamic cracking process is simulated based on the extended finite element method (XFEM).
Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Journal Article

Fatigue Life Estimation of Front Subframe of a Passenger Car Based on Modal Stress Recovery Method

2015-04-14
2015-01-0547
In this paper, the dynamic stress of the front subframe of a passenger car was obtained using modal stress recovery method to estimate the fatigue life. A finite element model of the subframe was created and its accuracy was checked by modal test in a free hanging state. Furthermore, the whole vehicle rigid-flexible coupling model of the passenger car was built up while taking into account the flexibility of the subframe. Meanwhile, the road test data was used to verify the validity of the dynamic model. On this basis, the modal displacement time histories of the subframe were calculated by a dynamic simulation on virtual proving ground consisting of Belgian blocks, cobblestone road and washboard road. By combining the modal displacement time histories with modal stress tensors getting from normal mode analysis, the dynamic stress time histories of the subframe were obtained through modal stress recovery method.
Journal Article

Modal Based Rotating Disc Model for Disc Brake Squeal

2015-04-14
2015-01-0665
Modelling of disc in brake squeal analysis is complicated because of the rotation of disc and the sliding contact between disc and pads. Many analytical or analytical numerical combined modeling methods have been developed considering the disc brake vibration and squeal as a moving load problem. Yet in the most common used complex eigenvalue analysis method, the moving load nature normally has been ignored. In this paper, a new modelling method for rotating disc from the point of view of modal is presented. First finite element model of stationary disc is built and modal parameters are calculated. Then the dynamic response of rotating disc which is excited and observed at spatial fixed positions is studied. The frequency response function is derived through space and time transformations. The equivalent modal parameter is extracted and expressed as the function of rotation speed and original stationary status modal parameters.
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

New Control Method of Four-Wheel Independent Driving Electric Vehicles for Anti-Slip Purpose

2020-04-14
2020-01-1420
The performance of electric vehicles could be enhanced by more flexible drivetrain configurations combined with advanced control methods. Based on four wheel independent driving and front and rear axle modular steering configuration, which was proposed by our research group last year, the problem of slippery under close-to-limit conditions are further discussed and simulated. A new torque vectoring method based on obtainable parameters and variables in real driving situations is introduced to reduce the sideslip when turning on low friction surfaces or with high speed. This method is developed from a comprehensive index, which reflects the stability and maneuverability, by adding additional torques when stability could not be compensated enough by basic torque vectoring. Besides, an improvement of adding a simu-Torsen differential mechanism is made to the model of the vehicle, which enables another control method with the same purpose as before.
Technical Paper

An Efficient Assistance Tool for Evaluating the Effect of Tire Characteristics on Vehicle Pull Problem

2020-04-14
2020-01-1237
The vehicle pull problem is very important to driving safety. Major factors that may cause the pull problem related to tire include variations of geometric dimension (e.g. RPK) and stiffness (e.g. cornering stiffness, aligning stiffness), plysteer and conicity. In previous research, the influencing mechanism of these factors was well studied. But in fact, vehicle pull problem caused by tire is probabilistic. When we assemble four tires onto the car, there could be 384 different assembly arrangements. If there are significant differences among these four tires, there will also be significant differences in the influence of different tire assembly schemes on vehicle pull, which has not been systematically discussed in previous studies. If we want to evaluate the pull performance of all these arrangements by vehicle test, it will be a time consuming process which will take almost 24 working days, along with a high test expense.
Journal Article

Prediction of Automotive Ride Performance Using Adaptive Neuro-Fuzzy Inference System and Fuzzy Clustering

2015-06-15
2015-01-2260
Artificial intelligence systems are highly accepted as a technology to offer an alternative way to tackle complex and non-linear problems. They can learn from data, and they are able to handle noisy and incomplete data. Once trained, they can perform prediction and generalization at high speed. The aim of the present study is to propose a novel approach utilizing the adaptive neuro-fuzzy inference system (ANFIS) and the fuzzy clustering method for automotive ride performance estimation. This study investigated the relationship between the automotive ride performance and relative parameters including speed, spring stiffness, damper coefficients, ratios of sprung and unsprung mass. A Takagi-Sugeno fuzzy inference system associated with artificial neuro network was employed. The C-mean fuzzy clustering method was used for grouping the data and identifying membership functions.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
X