Refine Your Search

Topic

Search Results

Technical Paper

Robust Sensor Fused Object Detection Using Convolutional Neural Networks for Autonomous Vehicles

2020-04-14
2020-01-0100
Environmental perception is considered an essential module for autonomous driving and Advanced Driver Assistance System (ADAS). Recently, deep Convolutional Neural Networks (CNNs) have become the State-of-the-Art with many different architectures in various object detection problems. However, performances of existing CNNs have been dropping when detecting small objects at a large distance. To deploy any environmental perception system in real world applications, it is important that the system achieves high accuracy regardless of the size of the object, distance, and weather conditions. In this paper, a robust sensor fused object detection system is proposed by utilizing the advantages of both vision and automotive radar sensors. The proposed system consists of three major components: 1) the Coordinate Conversion module, 2) Multi level-Sensor Fusion Detection (MSFD) system, and 3) Temporal Correlation filtering module.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Source Noise Isolation during Electric Vehicle Pass-By Noise Testing Using Multiple Coherence

2020-04-14
2020-01-1268
Due to the nearly silent operation of an electric motor, it is difficult for pedestrians to detect an approaching electric vehicle. To address this safety concern, the National Highway Traffic Safety Administration issued the Federal Motor Vehicle Safety Standard (FMVSS) No. 141, “Minimum Sound Requirements for Hybrid and Electric Vehicles”. This FMVSS 141 standard requires the measurement of electric vehicle noise according to certain test protocols; however, performing these tests can be difficult since inconsistent results can occur in the presence of transient background noise. Methods to isolate background noise during static sound measurements have already been established, though these methods are not directly applicable to a pass-by noise test where neither the background noise nor the vehicle itself as it travels past the microphone produce stationary sound signals.
Journal Article

Design and Control of Vehicle Trailer with Onboard Power Supply

2015-04-14
2015-01-0132
Typically, when someone needs to perform occasional towing tasks, such as towing a boat on a trailer, they have two choices. They can either purchase a larger, more powerful vehicle than they require for their regular usage, or they can rent a larger vehicle when they need to tow something. In this project, we propose a third alternative: a trailer with an on-board power supply, which can be towed by a small vehicle. This system requires a means of sensing how much power the trailer's power supply should provide, and an appropriate control system to provide this power. In this project, we design and model the trailer, a standard small car, and the control system, and evaluate the concept's feasibility. We have selected a suitable power source for the trailer, a DC motor, coupled directly to the trailer's single drive wheel, which allow us to dispense with the need for a differential.
Technical Paper

Development of Clean Snowmobile Technology for the 2006 SAE Clean Snowmobile Challenge

2006-11-13
2006-32-0051
Kettering University's entry for the 2006 Clean Snowmobile challenge utilizes a Polaris FST Switchback. This snowmobile having a two cylinder, four-stroke engine has been modified to run on ethanol (E-85). The student team has designed and built a new exhaust system which features customized catalytic converters to minimize engine out emissions. A number of improvements have been made to the track to reduce friction and diminish noise.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

Development of Clean Snowmobile Technology for Operation on High-Blend Ethanol for the 2008 Clean Snowmobile Challenge

2008-09-09
2008-32-0053
Clean snowmobile technology has been developed using methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Additionally, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. Finally, a number of additional improvements have been made to the track to reduce friction and diminish noise. The results of these efforts include emissions reductions of 94% when compared with snowmobiles operating at the 2012 U.S. Federal requirements.
Technical Paper

Kettering University's 2003 Design for the Clean Snowmobile Challenge

2003-09-15
2003-32-0076
Kettering University's entry in the 2003 Clean Snowmobile Challenge entails the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Numerical Simulations in a High Swirl Methanol-Fueled Directly-Injected Engine

2003-10-27
2003-01-3132
Three-dimensional transient simulations using KIVA-3V were conducted on a 4-stroke high-compression ratio, methanol-fueled, direct-injection (DI) engine. The engine had two intake ports that were designed to impart a swirling motion to the intake air. In some cases, the intake system was modified, by decreasing the ports diameter in order to increase the swirl ratio. To investigate the effect of adding shrouds to the intake valves on swirl, two sets of intake valves were considered; the first set consisted of conventional valves, and the second set of valves had back shrouds to restrict airflow from the backside of the valves. In addition, the effect of using one or two intake ports on swirl generation was determined by blocking one of the ports.
Technical Paper

Multidimensional Predictions of Methanol Combustion in a High-Compression DI Engine

2003-10-27
2003-01-3133
Numerical simulations of lean Methanol combustion in a four-stroke internal combustion engine were conducted on a high-compression ratio engine. The engine had a removable integral injector ignition source insert that allowed changing the head dome volume, and the location of the spark plug relative to the fuel injector. It had two intake valves and two exhaust ports. The intake ports were designed so the airflow into the engine exhibited no tumble or swirl motions in the cylinder. Three different engine configurations were considered: One configuration had a flat head and piston, and the other two had a hemispherical combustion chamber in the cylinder head and a hemispherical bowl in the piston, with different volumes. The relative equivalence ratio (Lambda), injection timing and ignition timing were varied to determine the operating range for each configuration. Lambda (λ) values from 1.5 to 2.75 were considered.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Technical Paper

Kettering University's Design of an Automotive Based Four-Stroke Powered Clean Snowmobile

2002-10-21
2002-01-2757
Kettering University's entry in the 2002 Clean Snowmobile Challenge involves the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Effect of High-Blend Ethanol Fuel on the Performance and Emissions of a Small Off-Road Engine with Minimal Modifications

2022-08-30
2022-01-1031
Much development in the automotive industry relates to the use of high-content ethanol blended fuels to reduce the emissions produced by on-road engines/vehicles. However, less research has been done on the effect of operating small off-road engines (SORE) on high-blend ethanol fuels without substantial modifications. Most manufacturers of such engines only certify proper operation on low content ethanol blends such as E10 (10% ethanol, 90% gasoline by volume). This paper focuses on the use of E77 fuel in a small off-road engine which is speed-governed. Such engines are commonly used in lawn mowers, small recreational vehicles, or other equipment. The exhaust emissions and performance of the engine were evaluated using the EPA 6-mode duty cycle for small recreational engines where testing and analysis followed the recommendations of SAE J1088. This test cycle consisted of operating the engine at steady state load points using a fixed engine speed.
Technical Paper

The Development of a Clean Snowmobile for the 2004 SAE Clean Snowmobile Challenge

2004-09-27
2004-32-0074
Kettering University's Clean Snowmobile Challenge student design team has developed a new robust and innovative snowmobile for the 2004 competition. Switching from the previous years four-stroke automotive engine, Kettering University has utilized a modified snowmobile in-line four cylinder, four-stroke, fuel- injected engine. This engine has been installed into a 2003 Yamaha RX-1 snowmobile chassis. Exhaust emissions have been minimized through the use of a customized catalytic converter and an electronically controlled closed-loop fuel injection system. A newly designed and tuned exhaust as well as several chassis treatments have aided in minimizing noise emissions.
Technical Paper

Development of Clean Snowmobile Technology for the 2005 SAE Clean Snowmobile Challenge

2005-10-24
2005-01-3679
Kettering University's Clean Snowmobile Challenge student design team has developed a new robust and innovative snowmobile for the 2005 competition. This snowmobile dramatically reduces exhaust and noise emissions and improves fuel economy compared with a conventional snowmobile. Kettering University has utilized a modified snowmobile in-line four cylinder, four-stroke, engine. The team added an electronically-controlled fuel-injection system with oxygen sensor feedback to this engine. This engine has been installed into a 2003 Yamaha RX-1 snowmobile chassis. Exhaust emissions have been further minimized through the use of a customized catalytic converter and an electronically controlled closed-loop fuel injection system. A newly designed and tuned exhaust as well as several chassis treatments have aided in minimizing noise emissions.
Journal Article

Task and Message Scheduling for a FlexCAN-based Hybrid-Electric Vehicle Drivetrain Functional Unit

2008-04-14
2008-01-0480
A Task and Message Schedule for a FlexCAN-based Hybrid-Electric vehicle (HEV) functional unit is described. The resulting schedule is a component of an incremental message and task scheduling approach based on a time-driven message schedule and priority-driven task schedule. The HEV functional unit involves the combined control and monitoring functions of an internal combustion engine working in parallel with a permanent magnet synchronous motor. The control algorithm for the synchronous motor has been simulated using VHDL-AMS. The global message system is supported by FlexCAN and the task scheduler system is supported by a priority based OS (e.g., OSEK or AUTOSAR).
Technical Paper

KDepthNet: Mono-Camera Based Depth Estimation for Autonomous Driving

2022-03-29
2022-01-0082
Object avoidance for autonomous driving is a vital factor in safe driving. When a vehicle travels from any random start places to any target positions in the milieu, an appropriate route must prevent static and moving obstacles. Having the accurate depth of each barrier in the scene can contribute to obstacle prevention. In recent years, precise depth estimation systems can be attributed to notable advances in Deep Neural Networks and hardware facilities/equipment. Several depth estimation methods for autonomous vehicles usually utilize lasers, structured light, and other reflections on the object surface to capture depth point clouds, complete surface modeling, and estimate scene depth maps. However, estimating precise depth maps is still challenging due to the computational complexity and time-consuming process issues. On the contrary, image-based depth estimation approaches have recently come to attention and can be applied for a broad range of applications.
Technical Paper

An Analysis of the Vehicle Dynamics Behind Pure Pursuit and Stanley Controllers

2023-04-11
2023-01-0901
As automated driving becomes more common, simulation of vehicle dynamics and control scenarios are increasingly important for investigating motion control approaches. In this work, a study of the differences between the Pure Pursuit and Stanley autonomous vehicle controllers, based on vehicle dynamics responses, is presented. Both are geometric controllers that use only immediate vehicle states, along with waypoint data, to control a vehicle’s future direction as it proceeds from point to point, and both are among the most popular lateral controllers in use today. The MATLAB Automated Driving Toolbox is employed to implement and virtually test the Pure Pursuit and Stanley lateral controllers in different driving scenarios. These include low intensity scenarios such as city driving, and emergency maneuvers such as the moose test.
Technical Paper

External Flow Analysis of a Truck for Drag Reduction

2000-12-04
2000-01-3500
Aerodynamics of trucks and other high sided vehicles is of significant interest in reducing road side accidents due to wind loading and in improving fuel economy. Recognizing the limitations of conventional wind tunnel testing, considerable efforts have been invested in the last decade to study vehicle aerodynamics computationally. In this paper, a three-dimensional near field flow analysis has been performed for axial and cross wind loading to understand the airflow characteristics surrounding a truck-like bluff body. Results provide associated drag for the truck geometry including the exterior rearview mirror. Modifying truck geometry can reduce drag, improving fuel economy.
X