Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

Isobaric Combustion at a Low Compression Ratio

2020-04-14
2020-01-0797
In a previous study, it was shown that isobaric combustion cycle, achieved by multiple injection strategy, is more favorable than conventional diesel cycle for the double compression expansion engine (DCEE) concept. In spite of lower effective expansion ratio, the indicated efficiencies of isobaric cycles were approximately equal to those of a conventional diesel cycle. Isobaric cycles had lower heat transfer losses and higher exhaust losses which are advantageous for DCEE since additional exhaust energy can be converted into useful work in the expander. In this study, the performance of low-pressure isobaric combustion (IsoL) and high-pressure isobaric combustion (IsoH) in terms of gross indicated efficiency, energy flow distribution and engine-out emissions is compared to the conventional diesel combustion (CDC) but at a relatively lower compression ratio of 11.5. The experiments are conducted in a Volvo D13C500 single-cylinder heavy-duty engine using standard EU diesel fuel.
Technical Paper

Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

2018-04-03
2018-01-0890
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Technical Paper

Novel Geometry Reaching High Efficiency for Multiple Injector Concepts

2019-04-02
2019-01-0246
Heat losses are known to decrease the efficiency of CI engines largely. Here, multiple injectors have been suggested to shrink these losses through reduction of spray wall impingement. Studies on multiple injectors have proven the concept’s heat transfer reduction but also highlighted the difficulty of using a standard piston bowl. This study proposes a two-injector concept combined with a flat bowl to reduce heat losses further. To change the spray pattern, the two injectors are injecting in a swirling motion while placed at the rim of the bowl. Four injection timings have been investigated using Reynolds-Averaged Navier-Stokes simulations. This computational method quantified the amount of heat loss reduction possible. A conventional single injector concept is compared to two injector concepts with a standard and flat bowl. A Double Compression Expansion Engine (DCEE) concept, based on a modified Volvo D13 single-cylinder engine, was the base for all simulations.
Technical Paper

Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept

2019-01-15
2019-01-0085
The efficiency of an internal combustion engine is highly dependent on the peak pressure at which the engine operates. A new compound engine concept, the double compression expansion engine (DCEE), utilizes a two-stage compression and expansion cycle to reach ultrahigh efficiencies. This engine takes advantage of its high-integrity structure, which is adapted to high pressures, and the peak motored pressure reaches up to 300 bar. However, this makes the use of conventional combustion cycles, such as the Seiliger-Sabathe (mixed) or Otto (isochoric) cycles, not feasible as they involve a further pressure rise due to combustion. This study investigates the concept of isobaric combustion at relatively high peak pressures and compares this concept with traditional diesel combustion cycles in terms of efficiency and emissions. Multiple consecutive injections through a single injector are used for controlling the heat release rate profile to achieve isobaric heat addition.
Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

2019-01-15
2019-01-0070
Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
X