Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Inlet Port Geometry and Flame Position, Flame Stability, and Emissions in an SI Homogeneous Charge Engine

1998-09-14
982056
This study investigates the relationship between intake port geometry, flame position and stability, and combustion rate and emissions in an air-cooled four-stroke engine where three intake ports of differing geometry have been tested. In particular, the production intake port geometry, and directed and helical intake port geometries were tested. It was a specific intent of this study to investigate the interaction between inlet port geometry, equivalence ratio and ignition timing, without interference from mixture preparation effects. Thus all tests were performed using a homogeneous mixture of propane and air. Significant differences in combustion stability, flame position and stability, burn rate and emissions were observed. For example, the flow induced by the helical port, which should be characterized by a dominant swirl motion, resulted in stabile, asymmetric flames at many of the operating conditions studied.
Technical Paper

A Comparison Between CFD Predictions and Measurements of Inlet Port Discharge Coefficient and Flow Characteristics

1999-09-28
1999-01-3339
Predictions of the volume flow rate through an inlet port were produced by four different commercially available CFD programs suitable for use in a steady flow simulation. These predictions were compared with experimental measurements of an inlet port's discharge coefficients. The experiment performed was a typical steady state flow bench test for an inlet port. Volume flow rates were measured at five different valve lifts. The largest valve lift tested (12.24mm) was the maximum value of lift under actual operation. The smallest valve lift was typical of early valve opening. The tests were performed at two different pressure differences across the inlet port and valve at each of the five different valve lifts. All predictions were made using an RNG k-ε turbulence model. Standard wall functions were used to predict wall friction effects and the energy equation was included to account for compressibility effects.
Technical Paper

Carburetor Exit Flow Characteristics

1996-08-01
961730
Three different carburetor types have been tested to observe differences in the characteristics of the fuel/air mixtures produced. To characterize the fuel/air mixtures, two diagnostics have been applied: 1) High speed movies and subsequent analysis of the exit flow, and 2) measurement of the A/F ratio found in different positions within the intake manifold. The three different carburetor types that have been studied include a fixed-venturi, fixed-jet butterfly carburetor, a slide-valve carburetor, and a constant-velocity carburetor. Each carburetor type produced a unique set of exit flow characteristics, with differences in the optical density of fuel exiting the carburetor, and differences in the apparent amount of fuel on the intake manifold wall, entrained in the air flow, and in vapor phase.
X