Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Local Mesh Refinement on Inverse Numerical Acoustics

2010-06-09
2010-01-1413
Inverse numerical acoustics is a method which reconstructs the source surface normal velocity from the sound measured in the near-field around the source. This is of particular interest when the source is rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser vibrometers is often of no remedy due to the complex shape of the source. The Inverse Numerical Acoustics technique is based on the inversion of transfer relations (Acoustic Transfer Vectors) using truncated Singular Value Decomposition (SVD). Most of the time the system is underdetermined which results in a non unique solution. The solution obtained by the truncated SVD is the minimal solution in the RMS sense. This paper is investigating the impact of non homogeneities in the mesh density (local mesh refinement) on the retrieved solution for underdetermined systems. It will be shown that if transfer quantities are inverted as such, big elements get a higher weight in the inversion.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

New Driving Stability Control System with Reduced Technical Effort for Compact and Medium Class Passenger Cars

1998-02-23
980234
Wheel slip control system have found a remarkable penetration in all car segments. The information on the wheel behavior has lead to further developments which control the brake performance as well as the driving of the car in general. Latest systems introduced especially on luxury cars use wheel individual brake intervention to ensure vehicle stability under various driving maneuvers within the physical limits. Such systems use vehicle dynamic sensors and special hydraulics which serve as energy source for the automatic brake application. The technical effort of such systems like the Dynamic Stability Control DSC has limited the installation to upper class cars so far. New approaches are required to allow for a more wide spread penetration. Optimized hydraulics together with a rational design of the electronics seems to offer a basis for a more cost effective design.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

A Steel Solution for a Firewall Using a Hybrid Test/CAE Approach

2009-04-20
2009-01-1547
The firewall design of a BMW1 is optimized for interior noise and weight using a Hybrid Interior Noise Synthesis (HINS) approach. This method associates a virtual firewall with a test based body model. A vibro-acoustic model of the firewall panel, including trim elements and full vehicle boundary conditions, is used for predictions in the 40 Hz - 400 Hz range. The short calculation time of this set-up allows multiple design iterations. The firewall noise is reduced by 0.9 dB and its mass by 5.1% through structural changes. Crashworthiness is maintained at its initial level using advanced steel processing. The total interior noise shows improvement in the 90 Hz - 140 Hz range.
Technical Paper

A Test-Based Procedure for the Identification of Rack and Pinion Steering System Parameters for Use In CAE Ride-Comfort Simulations

2009-05-19
2009-01-2090
Current CAE modeling and simulation techniques in the time domain allow, by now, very accurate prediction of many ride-comfort performances of the cars. Nevertheless, the prediction of the steering wheel rotation vibration excited by, for instance, wheel unbalance or asymmetric obstacle impact, often runs into the difficulty of modeling the steering line with sufficient accuracy. For a classic rack and pinion, hydraulic assisted steering line, one of the challenges is to model the complex and non linear properties - stiffness, friction and damping - of the rack-rack case system. This paper proposes a rack model, thought for easy implementation in complex multi-body models, and an identification procedure of its parameters, based on measurements, in the operational range of the wheel unbalance excitation. The measurements have been gathered by specific tests on the components and the test set-up is also shown here.
Technical Paper

FlexRay - The Communication System for Advanced Automotive Control Systems

2001-03-05
2001-01-0676
BMW, DaimlerChrysler, Motorola and Philips present their joint development activity related to the FlexRay communication system that is intended for distributed applications in vehicles. The designated applications for powertrain and chassis control place requirements in terms of availability, reliability and data bandwidth that cannot be met by any product currently available on the market under the testing conditions encountered in an automobile. A short look back on events so far is followed by a description of the protocol and its first implementation as an integrated circuit, as well as its incorporation into a complete tool environment.
Technical Paper

Tire and Car Contribution and Interaction to Low Frequency Interior Noise

2001-04-30
2001-01-1528
A joint study was conducted between BMW and Goodyear with the objective of analysing the cause and identifying methods to reduce the structure-borne interior noise in a vehicle driving on rough road surfaces. A vibro-acoustic characterization of the car was performed by measuring the car vibro-acoustic transfer functions and by using a transfer path analysis technique to identify the main suspension parts affecting the interior noise at target frequencies. The vibration transmissibility characteristics of the tire were measured and also simulated by Finite Element in [1-200Hz] frequency range. The vibro-acoustic interaction between the tire and car sub-systems was examined. A Finite Element sensitivity analysis was used to define and build new prototype tires. A 3dB(A) interior noise improvement was obtained with these new tires at target frequencies.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Advances in Industrial Modal Analysis

2001-03-05
2001-01-3832
One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
Technical Paper

Experimental and Numerical Modelling of Friction Induced Noise in Disc Brakes

2002-03-04
2002-01-1192
Friction-induced vibration is a serious problem in many industrial applications containing systems with rotating and/or sliding parts. Brake noise is a typical example. The critical element in the noise generation process is the combination of friction-induced loads with the dynamics of the braking system. In the present paper, a detailed experimental and numerical study of a specific low-frequency brake squeal problem is made on a simplified brake noise test rig. First, the signal and spatial characteristics of the noise were analyzed by spectral and acoustic holography techniques. A parametric study of influence factors as brake pressure, rotation speed, etc. was made. Operational deformation analysis during squeal confirms the dominant modal behavior of the components, implying the critical role of the assembly structural dynamics.
Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-04-12
2011-01-0186
During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Advanced State Estimator Design for an Active Suspension

2011-01-19
2011-26-0068
Active suspension systems aim at increasing safety by improving vehicle ride and handling performance while ensuring superior passenger comfort. Good control of this active system can only be achieved by providing the control algorithm with reliable and accurate signals for the required quantities. This paper presents the design and development of a state estimator that accurately provides the information required by a sky-hook controller, using a minimum of sensors. The vehicle inertial parameters are estimated by an algorithm based on Monte Carlo simulations and anthropometric data. All state updating is performed using Kalman filters. The resulting performance enhancement has been proven during test drives.
Technical Paper

Analysis of Global Dynamics of Rotating Systems like Jet Engines, with Special Emphasis on Harmonic Analysis in the Presence of Bearing with Clearances

2013-09-17
2013-01-2120
The paper presents first a description of the methods used for the analysis of global dynamics of rotating systems like jet engines but also auxiliary power units. Different methodologies are described so to model rotating parts using beam, but also Fourier multi-harmonic, three dimensional models or to take into account cyclic symmetry and multistage cyclic symmetry concepts. Advantages and disadvantages of the different model types are discussed and compared. The coupling of the rotating parts with casings and stators is then discussed both in the inertial frame and in the rotating frame. The effect on global dynamics of bearing and other linking devices is taken into account for different type of analysis from critical speed analysis, to harmonic and transient analysis. The effect of gears and gear boxes coupling different rotors (like it is the case for auxiliary power units in a jet engine) is then discussed and appropriate methods described so to model this coupling effect.
Technical Paper

The Integrated Brake and Stability Control System of the New BMW 850i

1990-02-01
900209
The first part of the paper describes the brake system of the BMW 850i including brake actuation, brake split and ABS. ABS control philosophy and components are presented as well as performance date are shown. The BMW 850i will be available with two Automatic Stability Control systems ASC und ASC+T which are explained more in detail. Special attention is payed to the electronic and hydraulic interfacing of the different sub-systems required for ABS and ASC.
Technical Paper

Using Mechanical-Acoustic Reciprocity for Diagnosis of Structure Borne Sound in Vehicles

1993-05-01
931340
The low frequency interior noise in cars is for a large part the result of structure borne excitation. The transfer of the structure borne sound involves a large number of components of the engine suspension, wheel suspension and chassis which are all potentially contributing to the overall noise level. This process can be analyzed through a combination of transfer function measurements with operational measurements under normal conditions. This technique, called transfer path analysis, requires large numbers of transfer function measurements with excitation of the body or cabin at the rubber mountings. Unfortunately, bad access to these crucial measurement locations causes either high instrumentation and measurement effort or less accurate measurement data. The practicality and quality of the measurements can be improved by using reciprocal measurements for the mechano-acoustic transfer of the body or cabin structure; a loudspeaker in the cavity is used for the reciprocal excitation.
Technical Paper

Identification, Quantification and Reduction of Structural- Borne Road Noise in a Mid-Size Passenger Car

1996-02-01
960195
This paper presents the measurement & analysis procedures and the results of a complete road noise identification and reduction project on a midsize passenger car. Operational interior noise signals and structural accelerations are measured for several test conditions. The operating data are decomposed into sets of mathematically independent phenomena by Principal Component Analysis. Operating Deflection Shape Analysis and Transfer Path Analysis are applied to each of these independent phenomena. Critical transfer paths are thus identified and quantified. The interior sound level is amplified when the frequency content of the transmitted energy coincides with structural resonances or standing waves of the interior car cavity. The vehicle is dynamically characterized by Experimental Structural Modal Analysis and by Acoustic Modal Analysis.
X