Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Microfluidic Ion Chromatograph for In-Flight Water Quality Analysis

2007-07-09
2007-01-3153
Although water quality may currently be analyzed on the ground after a flight, long-duration missions will require the capability to perform analyses on-board. If a water purifier fails, contaminants must be detected rapidly and corrective action taken in a timely manner to prevent serious harm to the crew. Many of the possible contaminants which could negatively affect astronaut health are inorganic ions. These ions can be quantified by ion chromatography (IC), although current commercially-available IC's are too large, heavy, and power-intensive to be used on a space mission. These units also require large quantities of caustic chemicals for analysis, which would pose a significant hazard in a microgravity environment. To meet the need for an inorganic water quality analysis device for long-duration missions, Lynntech developed an ion chromatograph tailored for future planned long-duration missions.
Technical Paper

Membrane-based Microfluidic Devices in the Design of a Space Compatible Carbon Analyzer

2000-07-10
2000-01-2516
The development of a new microfluidics based carbon analyzer that is capable of generating chemicals needed in the analysis is described. The analyzer design is based on several components, an electrochemical cell, a membrane conductivity sensor, and an electrochemical water de-ionizer, which utilize porous membranes such as proton exchange membrane, gas separation membrane, and ion exchange membrane n their operation. These membrane-based microfluidic devices (MBMD) allow miniaturization of the carbon analyzer into a compact instrument which will provide high sensitivity and low power consumption. Each of the membrane-based microfluidic components was fabricated and their functioning tested over a broad range of inorganic or organic carbon content in water samples.
Technical Paper

PEM Energy Storage for Solar Aircraft

1999-08-02
1999-01-2613
Practical solar powered aircraft require an efficient energy storage system to store energy during the day for use at night. Hydrogen and oxygen, generated by electrolyzing water during the day and recombined at night to generate electricity, has a theoretical energy density of 3.73 kWh/kg. Harnessing this potential has been approached with a combination of a lightweight PEM electrolyzer and a lightweight PEM fuel cell with a new stack structure utilizing metallurgical bonding to assemble thin metal gas barriers with lightweight metal flow fields. This design minimizes size, weight, electrical resistance, and part count. This technology has been demonstrated to produce efficient and effective stacks.
X