Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Integration of Physical and Virtual Tools for Virtual Prototype Validation and Model Improvement

2003-10-27
2003-01-2813
Hyundai Motor Company has combined physical and virtual testing tools to validate a full vehicle virtual prototype. Today a large number of physical tests are still required because the cycle of “design-build-test-change” relies on complex models of components and systems that typically are not easily validated. In order to shorten the development cycles, engineers perform multi-body simulations to dynamically excite components and systems and thereby estimate their durability under dynamic loads. The approach described herein demonstrates the feasibility of correlating the output from the corresponding physical and virtual prototype. Both synthetic and road load events are employed to excite physical and virtual vehicles, reveal difference in response, and ultimately improve the predictive capability of the model.
Technical Paper

Predicting Tire Handling Performance Using Neural Network Models

2004-03-08
2004-01-1574
Recent studies have shown that complex vehicle components such as shock absorbers, rubber bushings, and engine mounts can be accurately modeled by combining laboratory measurements with neural network technology. These nonlinear dynamic blackbox models (also known as Empirical Dynamics1 models) make it possible to predict nonlinear and hysteretic component behavior over wide ranges of amplitude and frequency. The models can handle realistic input waveforms as well as multiple inputs and multiple outputs. These techniques have now been applied to rolling pneumatic tires, to enable high accuracy predictions of tire and vehicle handling behavior. Models that predict high amplitude force components (three forces and three moments) using up to four randomly-varying inputs (radial deflection, slip angle, and camber angle, and slip ratio) have been successfully generated, using data obtained from MTS Flat-Trac III tire test equipment.
Technical Paper

A Practical Implementation of ASAM-GDI on an Automated Model Based Calibration System

2003-03-03
2003-01-1030
The paper addresses the connectivity issues related to integrating an Automated Model Based Calibration System (MTS Atlas) to a dynamometer test bed data acquisition system using an ASAM-GDI Interface. The GDI (Generic Device Interface) implementation was chosen over other ASAM interfaces due to its real-time capabilities and the ability to host new GDI drivers as these drivers become available. A structured migration process is developed showing how a new interface standard can be implemented that integrates with legacy test equipment, yet provides a simple low cost mechanism allowing replacement of old or redundant equipment.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
X