Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Journal Article

Virtual Road Approach for Vehicle Durability Simulations

2013-04-08
2013-01-1165
In current scenario, virtual validation is one of the important phase for any new product development process. The initial step for virtual validation for durability analysis of vehicle is to understand the loads which are transmitted to body from the roads. In current methodology standard 3g load cases are considered. These are worst load cases which show more number of high stress locations on vehicle. In actual vehicle running condition, dynamic loads are coming on vehicle structure. These dynamic loads can be obtained by measuring the loads coming on the vehicle through road load data acquisition system. The use of measured loads posed challenges due to the non-availability of representative mule in the initial phase of vehicle development. To overcome these challenges, Mahindra & Mahindra developed a new approach which enabled the direct substitution of analytically synthesized loads for measured data.
Technical Paper

A Durability Analysis Case Study of SUV and MUV Using Measured Proving Ground Road Profiles

2010-04-12
2010-01-0495
With an increasing demand to reduce the product development time cycle from concept-to-vehicle, weight saving effort and less prototype initiative, CAE evaluation technique in the vehicle durability development must allow the computer simulation to reproduce the actual driving condition over a proving ground. This paper describes the case study to predict the durability performance of full vehicle using vehicle FE parts in ADAMS model. The objective is to carry out full vehicle simulation in actual road load condition using reduced full vehicle FE model, condensed with the ADAMS model. The measured acceleration is applied to the vehicle FE model and dynamic loads converted to equivalent static loads. The FE model solved in MSC.Nastran® with number of static load subcases converted from the measured proving ground road data. It also verifies the validity of the evaluation methodologies by simulation-to-experiment comparisons.
Technical Paper

Finite Element Analysis of FEAD Bracket and Correlation with Test

2010-04-12
2010-01-0493
With the increasing demand for light weight engines, the design of FEAD (Front end accessory drive) Brackets has gradually shifted from conservative cast iron design to optimized aluminum design. Hence there is a requirement for a virtual validation procedure that is robust and accurate. The FEAD brackets for the engine are subjected to periodic vibrations (engine excitations) and random vibrations (Road excitations), the former being the more dominant of the two as road excitations are isolated by the power train mounts. Hence these brackets are susceptible to fatigue failures. The paper describes a virtual validation procedure adopted for FEAD brackets that gives accurate stress prediction and thereby ensures accuracy in predicted fatigue factor of safety for design. The simulated dynamic stresses are later compared with the test results and a good correlation is observed.
Technical Paper

DMADV Approach for Engineering Optimization and Quality - Application and Adaptability in Indian Automobile Industry

2017-07-10
2017-28-1930
Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Bringing Field to Lab in Tractor Evaluation Through Three Poster Test System and Statistical Tools

2005-11-01
2005-01-3539
The emerging business imperative of frequent new product introduction in market throws up challenge to shorten testing and evaluation time. Advanced test facilities and statistical tools have a greater role in reducing the evaluation cycle time. Considering limitations of field testing, a need was felt to simulate field condition in the laboratory i.e., ‘Bringing field to lab’. In this paper, an effort is made to explain the concept of ‘Bringing field to lab’ and the approach towards accomplishing it. The methodology developed for assessing effectiveness of laboratory tests i.e., ‘Power of Lab’ is shared. Various means of accelerating the tests and verifying field to lab correlation are explained. In quest to pursue the vision of ‘Bringing field to lab’ program, a new test facility has been developed to evaluate tractor i.e., Three-Poster Test System. Features of this test system, along with it’s role in ‘Bringing field to lab’, are shared along with the test results obtained.
Technical Paper

A Study on the Repeatability of Vehicle Ride Performance Measurements

2019-01-09
2019-26-0076
Across the automotive industries, objective measurements and subjective assessment of vehicle ride performance are routinely carried out during development as well as validation phase. Objective measurements are receiving increased attention as they are generally believed to offer a higher degree of objectivity and repeatability compared to the subjective assessment alone. Typical industry practices include the acquisition of vehicle-occupant vibrational response on specified road sections, test surfaces on proving grounds or in a controlled input environment such as four-poster test rig. In presented work, a study is performed on the repeatability of vehicle ride performance metrics such as weighted RMS acceleration and frequency responses using the data acquired in repeated trials conducted using three different sports utility vehicles (SUVs) on a sufficiently long designated road section.
Technical Paper

Innovative Methodology for Durability Evaluation of Off Road Vehicle Rear Axle under Bi-Axial Load Condition using Single Linear Actuator

2014-09-30
2014-01-2306
Rear axles are subjected to bending and torsion loads out of which Bending loads are predominant. In case of Off road vehicles Bi Axial- combination of Bending and torsion loads were predominant, because of axle construction and vehicle usage pattern. Defined test procedures are available for bending durability and torsional durability evaluation of axles. In this experiment, new test methodology was developed for Bi Axial durability evaluation of Off road vehicle rear axle with single servo hydraulic linear actuator. For creating Bi Axial load condition, we may need multiple actuators and complicated fixtures. Axle wheel end is constrained at an angle with suitable fixtures for creating the bending and torsional forces together in the axle. Servo hydraulic linear actuator with suitable loading arm is used for applying the test torque in the axle input flange.
Technical Paper

Optimisation of Scooter Frame for Target Life on 2-Poster Rig with Virtual Simulation

2019-01-09
2019-26-0307
Vehicle frame evaluation at early stages of product development cycle is essential to reduce product turnaround time to market. In conventional approach of virtual validation it is required to evaluate the strength of the vehicle structure to account for the standard Service Load Analysis (SLA) loading conditions. But this paper describes on the strength analysis of scooter frame with derivation of critical static load cases. The critical load cases are extracted from the load-time history while the vehicle was simulated on durability virtual test rigs which is equivalent to proving ground tests. This methodology gives the better accuracy in prediction of stress levels and avoids the overdesign of components based on traditional validation technique. There is significant drop in stress levels using the critical load case approach as compared to conventional load case method.
Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
X