Refine Your Search

Topic

Author

Search Results

Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Systematic CAE Approach to Minimize Squeak Issues in a Vehicle Using Stick-Slip Test Parameters

2021-09-22
2021-26-0269
Due to recent advancements in interior noise level and the excessive use of different grade leathers and plastics in automotive interiors, squeak noise is one of the top customer complaints. Squeak is caused by friction induced vibration due to material incompatibility. To improve costumer perception, interior designs are following zero gap philosophy with little control on tolerances leading to squeak issues. Often manufacturers are left with costly passive treatments like coatings and felts. The best option is to select a compatible material with color and finish; however, this will reduce the design freedom. Material compatibility or stick-slip behavior can be analyzed with a tribology test stand. However, this test is performed on a specimen rather than actual geometry. There were instances, when a material pair was found incompatible when tested on a specimen, but never showed any issue in actual part and vice versa.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Ladder Frame Concept Development through Parametric Beam Modelling

2021-09-22
2021-26-0416
Body-over-Frame is the primary type of construction used in SUVs, pick-ups, and other commercial vehicles in India. In this type of construction, the body, engine, suspensions etc. are mounted on the ladder frame. Since the frame acts as the skeleton of the vehicle, optimal design of frame at the concept stage of the vehicle program is critical for meeting all structural performance targets. Frontloading of these targets aids in architecture development and reduces future design modifications. The natural frequency response from the frame directly affects the NVH performance of the vehicle. This paper focuses on frontloading the natural frequency targets by performing concept-level simulations on the ladder frame even before creation of 3D concept data. A parametric beam model is created based on the reference vehicles. The beam model has been validated with correlation of more than 85% compared with CAE and physical testing outputs of existing vehicles.
Technical Paper

Steering Performance Calculator using Machine Learning Techniques

2021-09-22
2021-26-0415
In the conceptualization phase of vehicle development, for achieving reasonable dynamics performance, proper selection of steering system meeting all the requirements is necessary. This requires accurate prediction of major steering performance attributes like steering effort, steering torque, Turning Circle Diameter (TCD), %Ackerman and steering returnability. However, currently available models majorly depend on Computer Aided Engineering (CAE)-analysis or physical trials which requires system detailing and the same cannot be used for early prediction of the steering performances in the concept phase. This paper aims to address this deficiency with the help of a new steering performance calculator. In the calculator, performance attributes namely steering effort, steering torque, TCD and %-Ackerman has been modelled with engineering calculations and other attributes namely steering returnability&precision has been modelled through machine learning techniques.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Journal Article

A Systematic Approach for Load Cycle Generation Based on Real World Indian Drive Profile

2012-04-16
2012-01-0504
Within the last decade, due to increasing fuel prices, unstable political situation in major oil producing nations and global warming, there is an increased demand for fuel efficient and environment friendly vehicles. In this context, research is being concentrated in the field of advanced, greener powertrain configurations ranging from hybrids to EVs to fuel cells to HCCI engines. The efficacy for any of the above stated powertrain technology, lies in the optimum component specification. Component specification, operational reliability, & life prediction are highly dependent on the traffic condition, driving nature and vary from country to country. For developing countries, like India, where the traffic & drive pattern are dense & slow moving, there is a dire need for generating load cycle based on Real World Usage Profile (RWUP). The paper will propose a systematic approach to create load cycles in order to derive component specifications for the powertrain based on RWUP.
Journal Article

Analysis of Gear Geometry and Durability with Asymmetric Pressure Angle

2012-09-24
2012-01-1995
Gear design is one of the most critical components in the Mechanical Power Transmission industry. Among all the gear design parameters pressure angle is the most critical parameter, which mainly affects the load carrying capacity of the gear. Generally gears are designed with a symmetric pressure angle for drive and coast side. It means that both flank side of gear are able to have same load carrying capacity. In some applications, such as in wind turbines, the gears experience only uni-directional loading. In such cases, the geometry of the drive side need not be symmetric to the coast side. This allows for the design of gears with asymmetric teeth. Therefore new gear designs are needed because of the increasing performance requirements, such as high load capacity, high endurance, long life, and high speed. These gears provide flexibility to designers due to their non-standard design.
Journal Article

Virtual Road Approach for Vehicle Durability Simulations

2013-04-08
2013-01-1165
In current scenario, virtual validation is one of the important phase for any new product development process. The initial step for virtual validation for durability analysis of vehicle is to understand the loads which are transmitted to body from the roads. In current methodology standard 3g load cases are considered. These are worst load cases which show more number of high stress locations on vehicle. In actual vehicle running condition, dynamic loads are coming on vehicle structure. These dynamic loads can be obtained by measuring the loads coming on the vehicle through road load data acquisition system. The use of measured loads posed challenges due to the non-availability of representative mule in the initial phase of vehicle development. To overcome these challenges, Mahindra & Mahindra developed a new approach which enabled the direct substitution of analytically synthesized loads for measured data.
Technical Paper

Development of a Modern Diesel Engine with Ultra-Low Bore Distortion to Reduce Friction, Blowby, Oil Consumption and DPF Ash Loading

2020-09-25
2020-28-0344
The stringent emission regulations coupled with tighter CO2 targets demand extreme optimization of the diesel engines. In this context, it is important to minimize the cylinder bore distortions in cold and hot conditions. The cold bore distortion is primarily due to the assembly forces applied by the cylinder head bolts whereas the hot distortion is a resultant of local metal temperatures and structural rigidity. The present work describes the extreme optimization techniques used to reduce the bore distortion of a modern high power-density (60 kW / lit) diesel engine, Moreover, the benefits of reducing the bore distortion are quantified in terms of cylinder system friction, blowby rate, oil consumption (OC) and ash loading rate of the diesel particulate filter (DPF). An optimized torque plate honing is used to reduce the bore distortion in cold conditions.
Technical Paper

Pass-by Noise Generating System in Battery Electric Vehicle

2020-09-25
2020-28-0432
Battery Electric Vehicles (BEVs) are gaining momentum all around the world and India is not far behind in terms of EV sales. The principle difference between BEVs and Internal Combustion Engine based Vehicles (hereafter known as ICEs) is that BEVs run on electric motors and don’t have Internal Combustion based engines that generate significant noise while running. The engine noise contributes to noise pollution, but it is useful in alerting the pedestrians about the incoming vehicle and can function as a passive safety system. The lack of such noise can be a safety threat to pedestrians, cyclists, wildlife etc. Many countries around the world have mandated, or are in the process of mandating, a pass-by noise generating system to alert pedestrians about the incoming vehicle. This paper is an attempt to study various pass-by noise generating systems used worldwide in electric four-wheelers.
Technical Paper

Agricultural Tractor Engine Noise Prediction and Optimization through Test and Simulation Techniques

2021-09-22
2021-26-0277
Engine radiated noise has complex behavior as engine assembly consist different components, varying dynamic forces with wide range of speed. For open station tractor, engine noise is major contributor and hence needs to be optimized for regulatory norms as well customer comfort. The awareness about NVH comfort in domestic market as well as export market is increasing as customer have become more demanding. This forces OEM’s to put serious efforts to ensure the OEL noise / Engine noise is at acceptable levels. Identifying the optimized countermeasures to reduce the engine noise during the early design phase has a greater impact in reducing product development time and cost. This paper describes about a process that has been established for evaluating engine radiated noise and to improve the overall NVH performance.
Technical Paper

A Durability Analysis Case Study of SUV and MUV Using Measured Proving Ground Road Profiles

2010-04-12
2010-01-0495
With an increasing demand to reduce the product development time cycle from concept-to-vehicle, weight saving effort and less prototype initiative, CAE evaluation technique in the vehicle durability development must allow the computer simulation to reproduce the actual driving condition over a proving ground. This paper describes the case study to predict the durability performance of full vehicle using vehicle FE parts in ADAMS model. The objective is to carry out full vehicle simulation in actual road load condition using reduced full vehicle FE model, condensed with the ADAMS model. The measured acceleration is applied to the vehicle FE model and dynamic loads converted to equivalent static loads. The FE model solved in MSC.Nastran® with number of static load subcases converted from the measured proving ground road data. It also verifies the validity of the evaluation methodologies by simulation-to-experiment comparisons.
X