Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Front-Loading of Occupant Ingress-Egress Targets in Vehicle Architecture

2016-04-05
2016-01-0004
Achieving comfortable Ingress-Egress (I/E) is a major ergonomic challenge for Occupant packaging engineers during vehicle design. Vehicles should be designed so that the targeted drivers are able to comfortably get in and out of it. Simulating occupant ingress/egress motion for vehicle involves many constraints and capturing actual behavior of human motion is cumbersome. In recent years, there are number of studies to investigate occupant ingress/egress motion and to understand perceived discomfort, influence of specific design parameters, age impact etc. These studies majorly used techniques like real time motion capturing in a vehicle mockup, comparison of joint torques developed during the ingress/egress motions etc., to identify the occupants discomfort aspects. This paper aims to capture the ingress/egress influencing parameters and incorporating the parameters in vehicle architecture layout during concept phase itself considering various anthropometric measurements.
Technical Paper

Front Loading In-Vehicle Traffic Light Visibility Requirements for Driver as per Indian Road Standards

2017-07-10
2017-28-1932
Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
Technical Paper

Optimization of the Passenger Airbag Module to Meet Interior Fittings Compliance Requirements of ECE R21

2011-01-19
2011-26-0098
Airbags play a vital role in occupant protection during a crash event. Apart from the crash test the airbags have to additionally meet the requirements of the ECE R 12 headform impact test with Driver's Airbag (DAB) located in the steering wheel being deployed and the ECE R21 headform impact test for Passenger Airbag (PAB) in undeployed condition. Improper location of the PAB module below the Instrument Panel, the design of the air bag housing and the Instrument Panel are some of the factors that could lead to non compliance of the components of the uninflated PAB. The paper deals with the investigation conducted for compliance of the PAB to ECE R 21 with the uninflated air bag in meeting the requirements of 80 g at 19.3 km/h by proper location, changes to the design of the PAB cover, air bag housing brackets, etc.
Technical Paper

Novel Approach for Model-Based Development - Part II: Developing Virtual Environment and Its Application

2016-04-05
2016-01-0322
With continuous pressure for reducing vehicle development time and cost, without compromising on system reliability, it is imperative to move from Road to Lab to Model (RLM) based development. Every OEM is currently using virtual environment to complete functional checks of systems during development. The method of developing control functions and calibration in virtual environment brings repeatability and reproducibility which typically is challenging in real world testing. This process is cost effective and optimizes the time for development and brings high level of system maturity before testing it in the vehicle. This paper focuses on defining a front-loading approach for setting up of virtual test environment. Development of virtual test environment and its validation with respect to real vehicle data will be discussed, with focus on vehicle plant model and driver model.
Technical Paper

Novel Approaches for Model-Based Development - Part I: Developing a Real-World Driver Model

2016-04-05
2016-01-0323
OEMs these days are focusing on front loading the activities to Virtual Test Environment (VTE) based development owing to high development cost and complexity in achieving repeatability during testing phase of vehicle development,. This process not only helps in reducing the cost and time but also helps in increasing the maturity and confidence level of the developed system before actual prototype is built. In the past, extensive research has happened for increasing the fidelity of VTE by improving plant model efficacy which involves powertrain and other vehicle systems. On the other hand, improving the precision of driver model which is one of the most complex nonlinear systems of virtual environment still remains a challenge. It is apparent that various drivers show different behavior in real world for a given drive profile. While modelling a driver for a VTE, the real world driver attributes are seldom considered.
Technical Paper

Regeneration Calibration for Optimum Range and Effective Brakes Performances in eSUV

2024-01-16
2024-26-0110
Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. To enhance the braking performances and regenerative energy, regenerative braking control strategy based on multi objective optimization is explained in this paper. This technical paper would be focusing on extracting optimum Range with effective brake performances without affecting drivability and performances in different drives modes. An extensive research study on public road driving patterns is done to understand the percentage utilization of brakes at various (low-mid-high) speeds as per the customer driving behavior. Multi-Objective optimization function with three vital factors is defined where output generated power, torque smoothness and current smoothness are selected as optimization objective to improve the driving range, braking comfort, and battery lifetime respectively.
Technical Paper

Identification and Resolution of Vehicle Pull and Steering Wobble Using Virtual Simulation and Testing

2018-10-05
2018-01-1895
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. Vehicle pull is a condition where the driver must apply a constant correction torque to the steering wheel to maintain a straight-line course of the vehicle. This paper presents an investigation study into the characteristics of a vehicle experiencing steering drift. The aim of the work is to study vehicle stability and the causes of vehicle drift/pull during straight line to minimize vehicle pull level and hence optimize safety measures. A wobble in the steering wheel feels like the steering wheel is shaking to the left and right. This may get worse, if speed increases. This paper focuses on modelling and evaluating effects of suspension parameters, differential friction, brake drag variation, Unbalanced mass in the wheel assembly and C.G. location of the vehicle under multibody dynamic simulation environment.
X