Refine Your Search

Topic

Author

Search Results

Journal Article

Improving STL Performance of Automotive Carpets with Multi-layering and Effective Decoupling

2015-01-14
2015-26-0136
Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

In-Cylinder Charge Motion Development for Gasoline Engine

2021-09-22
2021-26-0062
In the recent years world-wide automotive manufacturers are continuously working in the research of the suiTable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, defined by regulatory authorities across the world. Many technologies have been already developed, or are currently under study, to meet the legislated targets. To meet this objective, the generation of tumble at intake stroke and the conservation of turbulence intensity at the end of compression stroke inside the combustion chamber have a significant role in the contribution towards accelerating the burning rate, increasing the thermal efficiency and reducing the cyclic variability [1]. Tumble generation is mainly attained by intake port design, and conservation is achieved during the end of compression stroke 690 ~ 720 crank angles (CA) which is strictly affected by the piston bowl geometry and pentroof combustion chamber shape.
Technical Paper

Use of Machine Learning to Predict the Injuries of the Occupant of a Vehicle Involved in an Accident

2021-09-22
2021-26-0003
As per the 2018 MoRTH accident report, there were 467,044 accidents, out of which 137,726 were fatal which resulted in 151,417 fatalities. In order to get an idea of the reasons for injuries and estimate the benefits of any intervention, a mathematical model should go a long way. This study is aimed at the development of such a model to predict the injuries sustained by the occupants of an M1 vehicle. We used a detailed accident database of 'Road Accident Sampling System India' (RASSI). RASSI, since 2011, has been collecting traffic accident data scientific across various locations in India. In the data, the occupant injuries are classified as No injury, Minor, Serious and Fatal We used the data of about 4700+ M1 occupants for the study & used almost 40 input parameters to determine the outcome. Based on the data, an algorithm was developed with an overall accuracy of about 67%. The parameters represented human, infrastructure, and environment.
Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Improving Rough Road NVH by Hydraulic Mount Design Optimization

2020-04-14
2020-01-0422
Vehicle cabin comfort emphasizes a specific image of a brand and its product quality. Low frequency powertrain induced noise and vibration levels are a major contributor affecting comfort inside passenger cabin. Thus, using hydraulic mount is a natural choice. Introduction of lighter body panels coupled with cost effective hydraulic mounts has resulted in some additional noises on rough road surfaces which are challenging to identify during design phase. This paper presents a novel approach to identify two such noises i.e. Cavitation noise and Mount membrane hitting noise based on component level testing which are validated at vehicle experimentally. These noises are encountered at 20~30kmph on undulated road surfaces. Sound quality aspect of such noises is also studied to evaluate the solution effectiveness.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Road-Lab-Math (RLM) Strategy for Improving Vehicle Development Efficiency

2021-09-22
2021-26-0193
In today’s Indian automotive industry, vehicles are becoming more complex and require more efforts to develop. Also, new and upcoming regulations demand more trials under varied driving conditions to ensuring robustness of emission control. Combined with expectations of customer to get new products more frequently, requires solutions and methods that can allow more trials with required accuracy to ensure compliance to stricter regulation and delivery a quality product. This translates into more trials in less time during the development life cycle. Recently, to overcome above challenge, there has been focus on simulating the vehicles trials in engine bench environment. ‘Road to Lab to Math’ (RLM) is a methodology to reduce the effort of On-road testing and replace it with laboratory testing and mathematical models. Also, on-road testing of prototype vehicles is expensive as it requires physical parts.
Technical Paper

Dynamic Strength Co-Simulation for Valve Train Mechanism Design Virtual Validation

2020-04-14
2020-01-0949
As the automotive market is very dynamic and vehicle manufactures try to reduce the vehicle development cycle time, more focus is being given to CAE simulation technologies to reduce the design cycle time and number of physical tests. CAE engineers are continuously working on improving the accuracy of CAE simulation, such as using flexible body dynamic simulation in place of linear static analysis. Strength calculation under dynamic condition is more accurate as compared to static condition as it gives more clear understanding of stress variation with motion, contacts and mass inertia. Failure has been observed in new development of valve train pivot screw under test conditions. As per linear static analysis, design was judged OK. Normal linear static analysis is a two stage process. In first stage loads are calculated by hand or peak loads are taken from multibody dynamics (MBD) rigid body analysis.
Technical Paper

Design for Improvement in Steering Vibration Performance in a Passenger Vehicle

2017-03-28
2017-01-0439
In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
Technical Paper

Approaches of NVH Improvements for Fuel Pump Noise Issues

2017-03-28
2017-01-0442
With the increasing expectation of customer for a quiet and comfortable ride, automobile manufacturers need to continuously work upon to improve automobile powertrain NVH. Today’s customer has become so aware of vehicle related noises that in-tank fuel pump noise is no exception to the checklist of evaluating cabin NVH. In-tank fuel pump, that is responsible for delivering the fuel from fuel storage tank to delivery rail, uses an electric driven motor. The rotating parts such as rotor, etc. produce vibrations that may traverse to tank body & subsequently vehicle body. Since noise is essentially an audible vibration at its root, these structure borne vibrations may be perceived as noise inside passenger cabin. Additionally, the noise may also be produced by fuel flow pulsations if transferred through piping to vehicle body. This paper focuses on various approaches to reduce the fuel pump generated noise heard inside passenger cabin.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
Technical Paper

Reduction of Seat Back Vibrations in a Passenger Car- An Integrated CAE - Experimental Approach

2011-04-12
2011-01-0497
In the present automobile market, customers have put demand for smaller cars with better ride and comfort. For small diesel engine cars, where the comfort is known to be inferior to its gasoline siblings, the effect of engine excitation and road inputs has posed the problem of seat back vibrations. Low frequency vibrations are observed at irregular road inputs, which directly get transferred to the human body through the seat back resulting in fatigue and discomfort. This paper describes the use of testing and CAE in reducing the seat back vibrations. First step of the study includes the frequency response functions (FRF) of the seat frame and road data. The CAE model is validated with the test data and the problem areas are identified. The countermeasure design modifications in the seat frame structure are analyzed using CAE (Normal Mode Analysis). The feasible countermeasure action is road tested and clearly shows a reduction in the vibration levels coming on the seat back.
Technical Paper

Challenges of Hydraulic Engine Mount Development for NVH Refinement

2018-04-03
2018-01-0681
NVH refinement of passenger vehicle is essential to customer acceptance for premium or even mid-size segment passenger cars. Hydraulic engine mount is becoming common for these segments to reduce engine bounce, idle shake and noise transfer to passenger cabin. Modern layout of hydraulic mount with integrated engine-bracket and smaller size insulator has made it cost-effective to use due to reduction of cost gap from conventional elastomeric mounts. However the downsizing and complex internal structure may create some new types of noises in passenger cabin which are very difficult to identify in initial development stage. Main purpose of hydraulic mount is to provide high damping at low-frequency range (6~15 Hz) and to isolate noise transfer from combustion engine to passenger cabin within wide frequency range (15~600 Hz).This paper emphasizes on challenges and problems related to hydraulic mount development.
Technical Paper

Model Based Design of xEV Powertrain Controls

2012-01-09
2012-28-0023
Powertrain Control development has gone through many changes in terms of process, tools and practice at all OEM's across the geography. This is mainly driven by increased number of powertrain components for control, shorter development schedules, cost control, and the need to realize the potential of electronic control to increase the performance, efficiency, safety and comfort. With the significant advancement in Powertrain Controls and additions of electronic functions, it has become imperative to automate the controller development process in the V-cycle to reduce the time and make the process more efficient while detecting any logic failures upfront at the early stage of the development cycle. Traditional practices and tools of defining the controls cannot meet new requirements. Model Based Design (MBD) approach is a promising solution to meet the critical needs of powertrain control engineering to define the control logic and validate.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Numerical Modeling of Critical Path Contributions for NVH Prediction of Vehicle

2013-11-27
2013-01-2802
For any new vehicle development, NVH target setting is crucial activity. Structural modification are to be done in early design phase to improve cabin comfort by identifying the sensitive paths and taking appropriate countermeasures for reduction of noise or vibrations transmission to cabin. A benchmark vehicle is taken to define the target areas for next model development. Numerical computations with suitably modified virtual model are carried out to accelerate the development cycle. Transfer path analysis (TPA) is an established technique for estimation and ranking of individual low-frequency noise or vibration contributions via the different structural transmission paths from point coupled powertrain or wheel-suspensions to the vehicle body [1]. TPA technique can also be used to define the improvement targets for future vehicles.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Virtual Validation of Gear Shifting Lever Assembly by Impact Simulation and Correlation with Testing

2022-10-05
2022-28-0375
Government’s focus on road safety requirements is resulting in faster adoption of stringent automobile safety regulations in India. In addition, due to changing customer preference, automobile companies are also working to provide safer vehicles in the market. Due to the complexity and high cost of the vehicle safety testing, more focus is given to development of CAE simulation technologies to validate the design for meeting regulatory norms, reducing design cycle time and number of physical tests. Safety requirement in vehicle safety regulations is to minimize the impact transfer to the occupants in case of vehicle crash. During vehicle crash condition, there is possibility that driver head may hit the gear shift lever assembly (GSLA) knob as it falls in the hitting area with respect to driver seat reference point (SRP). There is a regulatory requirement for the maximum acceleration level that is to be experienced by the driver during impact to prevent serious head injury.
Technical Paper

CAE Approach to Reduce Engine Mount Rumble Noise

2022-10-05
2022-28-0080
With the increasing competition in the automotive industry, customer experience & satisfaction is at the top of every organization's goals. The customers have evolved & NVH refinement has become the parameter for their decision making in buying a car. The major source of rumble noise in a vehicle is the induced vibrations due to combustion forces in an IC engine. These vibrations are then transferred to the vehicle body through engine mounts. Hence engine mounts play a key role in defining the NVH & the ride performance of any vehicle. However, it is infeasible to validate every mount design through the physical test as it will be both costly & time-consuming. But multiple design iterations can be verified by the CAE approach quite effectively. This paper focuses on the novel CAE approach to evaluate the mount vibrations due to engine dynamics. The process involves preparing a FEA model of the complete Powertrain system.
X