Refine Your Search

Topic

Author

Search Results

Journal Article

Numerical Investigation of Laminar Flame Speed of Gasoline - Ethanol/Air Mixtures with Varying Pressure, Temperature and Dilution

2010-04-12
2010-01-0620
A numerical analysis was performed to study the variation of the laminar burning speed of gasoline-ethanol blend, pressure, temperature and dilution using the one-dimensional premixed flame code CHEMKIN™. A semi-detailed validated chemical kinetic model (142 species and 672 reactions) for a gasoline surrogate fuel was used. The pure components in the surrogate fuel consist of n-heptane, isooctane and toluene. The ethanol mole fraction was varied from 0 to 85 percent, initial pressure from 4 to 8 bar, initial temperature from 300 to 600K, and the EGR dilution from 0 to 32% to represent the in-cylinder conditions of a spark-ignition engine. The laminar flame speed is found to increase with ethanol concentration and temperature but decrease with pressure and dilution.
Journal Article

A Novel Singular Perturbation Technique for Model-Based Control of Cold Start Hydrocarbon Emission

2014-04-01
2014-01-1547
High hydrocarbon (HC) emission during a cold start still remains one of the major emission control challenges for spark ignition (SI) engines in spite of about three decades of research in this area. This paper proposes a cold start HC emission control strategy based on a reduced order modeling technique. A novel singular perturbation approximation (SPA) technique, based on the balanced realization principle, is developed for a nonlinear experimentally validated cold start emission model. The SPA reduced model is then utilized in the design of a model-based sliding mode controller (SMC). The controller targets to reduce cumulative tailpipe HC emission using a combination of fuel injection, spark timing, and air throttle / idle speed controls. The results from the designed multi-input multi-output (MIMO) reduced order SMC are compared with those from a full order SMC. The results show the reduced SMC outperforms the full order SMC by reducing both engine-out and tailpipe HC emission.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

A Computational Investigation of Hydrotreated Vegetable Oil Sprays Using RANS and a Modified Version of the RNG k - ε Model in OpenFOAM

2010-04-12
2010-01-0739
Hydrotreated vegetable oil (HVO) is a high-cetane number alternative fuel with the potential of drastic emissions reductions in high-pressure diesel engines. In this study the behavior of HVO sprays is investigated computationally and compared with conventional diesel fuel sprays. The simulations are performed with a modified version of the C++ open source code OpenFOAM using Reynolds-averaged conservation equations for mass, species, momentum and energy. The turbulence has been modeled with a modified version of the RNG k-ε model. In particular, the turbulence interaction between the droplets and the gas has been accounted for by introducing appropriate source terms in the turbulence model equations. The spray simulations reflect the setup of the constant-volume combustion cell from which the experimental data were obtained.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Design and Testing of a Four-Stroke, EFI Snowmobile with Catalytic Exhaust Treatment

2001-09-24
2001-01-3657
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive and environmentally friendly. The following paper describes the conversion process in detail with actual engine test data. The hydrocarbon emissions of the new, four-stroke snowmobile are 98% lower than current, production, two-stroke models. The noise production of the four-stroke snowmobile was 68 dBA during an independent wide open throttle acceleration test. If the four-stroke snowmobile were to replace all current, two-stroke snowmobiles in Yellowstone National Park (YNP), the vehicles would only produce 16% of the combined automobile and snowmobile hydrocarbon emissions compared to the current 93% produced by two-stroke snowmobiles.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.

2011-04-12
2011-01-0341
A numerical simulation of autoignition of gasoline-ethanol/air mixtures has been performed using the closed homogeneous reactor model in CHEMKIN® to compute the dependence of autoignition time with ethanol concentration, pressure, temperature, dilution, and equivalence ratio. A semi-detailed validated chemical kinetic model with 142 species and 672 reactions for a gasoline surrogate fuel with ethanol has been used. The pure components in the surrogate fuel consisted of n-heptane, isooctane and toluene. The ethanol volume fraction is varied between 0 to 85%, initial pressure is varied between 20 to 60 bar, initial temperature is varied between 800 to 1200K, and the dilution is varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a spark-ignition engine. The ignition time is taken to be the point where the rate of change of temperature with respect to time is the largest (temperature inflection point criteria).
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Two-Input Two-Output Control of Blended Fuel HCCI Engines

2013-04-08
2013-01-1663
Precise cycle-to-cycle control of combustion is the major challenge to reduce fuel consumption in Homogenous Charge Compression Ignition (HCCI) engines, while maintaining low emission levels. This paper outlines a framework for simultaneous control of HCCI combustion phasing and Indicated Mean Effective Pressure (IMEP) on a cycle-to-cycle basis. A dynamic control model is extended to predict behavior of HCCI engine by capturing main physical processes through an HCCI engine cycle. Performance of the model is validated by comparison with the experimental data from a single cylinder Ricardo engine. For 60 different steady state and transient HCCI conditions, the model predicts the combustion phasing and IMEP with average errors less than 1.4 CAD and 0.2 bar respectively. A two-input two-output controller is designed to control combustion phasing and IMEP by adjusting fuel equivalence ratio and blending ratio of two Primary Reference Fuels (PRFs).
Technical Paper

Development of Steel Clad Aluminum Brake

2013-09-30
2013-01-2054
Aluminum based brake rotors have been a priority research topic in the DOE 1999 Aluminum Industry Roadmap for the Automobile Market. After fourteen years, no satisfactory technology has been developed to solve the problem of aluminum's low working temperatures except the steel clad aluminum (SCA) brake technology. This technology research started at Michigan Technological University (MTU) in 2001 and has matured recently for commercial productions. The SCA brake rotor has a solid body and replaces the traditional convective cooling of a vented rotor with conductive cooling to a connected aluminum wheel. Much lower temperatures result with the aluminum wheel acting as a great heat sink/radiator. The steel cladding further increases the capability of the SCA rotor to withstand higher surface temperatures. During the road tests of SCA rotors on three cars, significant gas mileage improvement was found; primarily attributed to the unique capability of the SCA rotor on pad drag reduction.
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

Modeling of Early Pressure Rise and Flame Growth in a Spark Ignition Engine

1994-10-01
941930
A thermodynamical model of the ignition and flame growth process was developed to understand and minimize cycle-to-cycle variations in pressure due to minor differences in flame kernel growth at the spark plug electrode between cycles. Initial flame kernel size after the spark breakdown process was determined by solving the one-dimensional cylindrical shock flow equation. Overall reaction rates, flame speeds including turbulence and intensity, high temperature equilibrium and other thermodynamic properties were calculated by peripheral sub-models. Relative effects of spark power, heat loss to the spark plug, and the chemical heat release were studied under varying engine conditions. Results show that breakdown energy has a significant effect on the formation and size of the initial kernel and that the effect of flame kernel velocity on subsequent combustion was considerable at specific engine conditions.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

The Effect of Fuel Injection Rate and Timing on the Physical, Chemical, and Biological Character of Particulate Emissions from a Direct Injection Diesel

1981-09-01
810996
Formation of pollutants from diesel combustion and methods for their control have been reviewed. Of these methods, fuel injection rate and timing were selected for a parametric study relative to total particulate, soluble organic fraction (SOF), sulfates, solids and NO and NO2 emissions from a heavy-duty, turbocharged, after-cooled, direct-injection (DI) diesel. Chemical analyses of the SOF were performed at selected engine conditions to determine the effects of injection rate and timing on each of the eight chemical subfractions comprising the SOF. Biological character of the SOF was determined using the Ames Salmonella/microsome bioassay.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck

1984-11-01
841711
A set of control functions have been investigated for a computer controlled diesel cooling system, using the vehicle engine cooling system code. Various engine operating conditions such as the engine load, engine speed, and ambient temperature are considered as the controlling variables in the control loops. The truck simulated in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and after-cooler. The vehicle also had a Kysor fan-clutch and shutter system. Comparison simulation tests between the conventional cooling system and the computer controlled cooling system using the Vehicle-Engine-Cooling Computer System model under different ambient and route conditions show that the computer controlled cooling system would offer the following benefits: 1.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
X