Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion Control Technologies for Direct Injection SI Engine

1996-02-01
960600
Novel combustion control technologies for the direct injection SI engine have been developed. By adopting up-right straight intake ports to generate air tumble, an electro-magnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke.
Technical Paper

Development of Gasoline Direct Injection Engine

1997-02-24
970541
The major problems of the various mixture formation concepts for direct injection gasoline engines that have been proposed up to the present were caused by the difficulties of preparing the mixture with adequate strength at spark plug in wide range of engine operating conditions. Novel combustion control technologies proposed by Mitsubishi is one of the solution for these problems. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. GDI™ (Gasoline Direct Injection) engine adopting these technologies is developed. At partial loads, fuel economy improvement exceeding 30 % is realized.
X