Viewing 1 to 30 of 47
Journal Article
Atsuhiro Kawamura, Tadanori Yanai, Yoshio Sato, Kaname Naganuma, Kimitaka Yamane, Yasuo Takagi
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper
Akemi Ito, Hideshi Hitosugi, Shoichi Furuhama
An unique measurement method was developed for measurement of the piston outer surface during the engine operation. The method was realized by embedding a gap sensor into a cylinder bore and by rotating the cylinder in the circumferential direction. By means of this method, interesting data of skirt deformation of a gasoline engine caused by temperature, pressure and the slap force were obtained.
Technical Paper
Katsuyoshi Koyanagi, Masaru Hiruma, Hiromasa Hashimoto, Kimitaka Yamane, Shoichi Furuhama
According to authors' previous research, high pressure hydrogen engines with direct injection right before TDC and spark ignition obtain high performance and eliminate almost. abnormal combustion. This study has clarified the mooted points in the flame propagation to adjacent jets and the control of the optimum spark timing and large NOx emissions even in leaner than excess air ratio of λ=2. Nitric oxides (NOx) is the only the pollutant in the exhaust gases emitted by hydrogen engines. It has been found that the NOx formation largely depends on the mixture formation method. In order to operate the engine in a small amount of NOx, an experimental study was carried out to investigate the reduction of NOx and the output power by using dual mixture formation method, external mixture formation and direct injection.
Technical Paper
Katsuyoshi Koyanagi, Masaru Hiruma, Kimitaka Yamane, Shoichi Furuhama
In order to establish hydrogen engines for practical use, it is important to overcome difficulties caused by unique characteristics of hydrogen fuel. A hydrogen engine with direct injection right before top dead center(TDC) and spark ignition has advantages such as prevention of abnormal combustion and realization of high power output near the stoichiometric air-fuel ratio, in comparison with an engine with external mixture. On the other hand, it has been pointed out that ignition and combustion for this type of hydrogen engines should be improved and that further studies on mixture formation of air and injected hydrogen are necessary for the improvement. For the direct injection hydrogen engine, mixture is formed both by air flow inside the combustion chamber and by injected hydrogen jet.
Technical Paper
Tadahiro Suhara, Shinji Ato, Masaaki Takiguchi, Shoichi Furuhama
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
Technical Paper
Kei Nakayama, Yuuki Yasutake, Masaaki Takiguti, Shoichi Furuhama
This study has been aimed at the reduction of the intense piston skirt friction force that appears in the expansion stroke out of all piston friction forces generated in gasoline engines. The friction characteristics at the piston skirt have been analyzed according to the measured results at piston friction forces and the shapes of wears at the piston skirt in actual engine operations. It is found from the above that the majority of the side force working on each piston is supported by the oil film on the skirt, while only some of the side force is supported by the portion in metallic contact with the cylinder. It is also found through experiments that the metallic contact portion has a great effect on the friction force at the skirt. The effect of piston posture in expansion stroke on the friction force has been also analyzed based on the measured results of piston slap motions.
Technical Paper
Masaaki Takiguchi, Kei Nakayama, Shoichi Furuhama, Hideki Yoshida
This paper describes a measurement method using laser induced fluorescence we have developed for simple simultaneous measurements of piston ring oil film thickness at plural points for internal combustion engines. The findings obtained by the measurements of oil film thickness on both thrust and anti-thrust sides of the piston for a mono-cylinder compact diesel engine using this new measurement method are also discussed in this paper. One of main findings is that the oil film thickness of each ring on both sides differs markedly in terms of the absolute value and the stroke- to-stroke variation. It is found that this difference in oil film thickness is caused by the difference in the amount of lubricating oil supplied to the oil ring, and the effect is greater than that of engine speed or load.
Technical Paper
Takashi Kondo, Shuuichi Iio, Masaru Hiruma
It is a well-known fact that the exhaust emission characteristics of hydrogen fueled engines are extremely good. The external mixture formation - a hydrogen fuel supply method - has the merit of practically zero NOx emission level in the lean mixture range with the excess air ratio λ set at 2.0 or greater as well as the merits of simple mechanism and easy operation. However, the practical use of such engines has been impeded partly due to the occurrence of backfire where the excess air ratio λ is 2 to 3. In order to allow the practical use of the hydrogen fueled engines with external mixture formation, it is vital to determine the causes of backfire and to establish proper countermeasures. It is found through a recent study conducted on the mechanism of backfire that the abnormal electric discharge in the intake stroke is one of the causes of backfire.
Technical Paper
Takeyuki Kamimoto, Shigeharu Kobori, Seok Hong Noh, Yoshiteru Enomoto
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper
Katsuyoshi Koyanagi, Masaru Hiruma, Shouichi Furuhama
In this study, the cause of backfire concerning an external mixture formation type hydrogen engine was clarified. It has been known that the maximum output power of the external mixture formation type hydrogen engine should be kept significantly low, because of backfire. Generally, the backfire of this type of hydrogen engine is caused by pre-ignition. In this type of hydrogen engine, pre-ignition occurred for a range of lean mixture. Under this study, therefore, the relationship between the occurrence of backfire and the temperature at the tip of the spark plug electrode, and the detection of the luminescence spectrum of the flame near the spark plug were examined and studied in relation to the spark plug ignition theory which appeared to be promising. Then the pre-ignition timing and location were studied by detecting the flame luminescence spectrum.
Technical Paper
Mitsuru Urabe, Takashi Tomomatsu, Kazuya Ishiki, Masaaki Takiguchi, Tsuneo Someya
Exhaust-gas recirculation (EGR) causes the piston rings and cylinder liners of a Diesel engine to suffer abnormal wear on the sliding parts. The present study aimed at making clear such abnormal wear structurally by examining the state of lubrication of the piston with a floating liner method, observing directly a visualized cylinder and experimenting on a Diesel engine for wear. As a result, it was confirmed that soot in EGR gas would change a lot the characteristics of the piston friction force. There are two mechanisms: one directly enters the sliding surfaces, and the other enters the ring rear, applying more load to them. It was also confirmed that the level of wear on the piston ring would vary to a large extent as the state of lubrication changed.
Technical Paper
Dermot Madden, Kwangsoo Kim, Masaaki Takiguchi
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
Technical Paper
Yasuo Takagi, Fumihiro Nakatani, Muneyuki Okamoto, Tatehiko Shimizu, Satoru Hikita
The results of this study make clear the characteristics of electrode performance deterioration in terms of cell voltage reduction in polymer electrolyte fuel cells (PEFCs) caused by the presence of certain quantities of carbon monoxide and/or hydrogen sulfide in the anode feed. AC impedance measurements of the anode and cathode potentials revealed that both electrode potentials showed deterioration in the presence of each type of poisoning gas. This suggests that the poisoning gases permeated the electrolyte membrane and transferred to the cathode, causing performance deterioration by poisoning the catalyst. In addition, AC impedance measurements indicated that the presence of hydrogen sulfide in the anode feed increased the membrane impedance, thus implying some poisoning effect even on the electrolyte membrane.
Technical Paper
Aiming at the improvement in piston lubrication and the reduction of piston friction loss under this study, piston friction forces of cylinders with different surface roughness and treatment methods have been measured by means of a floating liner method, and the piston surface conditions have been also observed. As a result, it is found that the piston lubrication can be markedly improved by reducing the cylinder surface roughness. It is also verified that the deterioration in lubrication can be reduced even if some low viscosity oil is used, and the effect on the friction loss reduction becomes greater by reducing the piston surface roughness. On the other hand, it is found that many small vertical flaws are generated on the cylinder surface by reducing the surface roughness. In order to cope with this problem, etching and DLC (Diamond Like Carbon) coating have been tested as the surface treatments. As a result, it is confirmed that DLC coating is effective for the above.
Technical Paper
T. Shudo, W. K. Cheng, T. Kuninaga, T. Hasegawa
Hydrogen can be readily used in spark-ignition engines as a clean alternative to fossil fuels. However, a larger burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a larger cooling loss from burning gas to the combustion-chamber wall. Because of the large cooling loss, the thermal efficiency of a hydrogen-fueled engine is sometimes lower than that of a conventionally fueled engine. Therefore, the reduction of the cooling loss is very important for improving the thermal efficiency in hydrogen-combustion engines. On the other hand, the direct-injection stratified charge can suppress knocking in spark-ignition engines at near stoichiometric overall mixture conditions. Because this is attributed to a leaner end gas, the stratification can lead to a lowered temperature of burning gas around the wall and a reduced cooling loss.
Journal Article
Takumi Kataoka, Yukikazu Suzuki, Naoya Kato, Takashi Kikuchi, Yuji Mihara
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Technical Paper
Takeshi Sugihara, Kenjiro Shimano, Yoshiteru Enomoto, Yasuko Suzuki, Masahiko Emi
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper
Yusuke Narioka, Tomoyuki Yokoyama, Shinichi Iio, Yasuo Takagi
Hydrogen is expected to be a clean and energy-efficient fuel for the next generation of power sources because it is CO2-free and has excellent combustion characteristics. In this study, an attempt was made to apply Homogeneous Charge Compression Ignition (HCCI) combustion to hydrogen with the aim of achieving low oxides of nitrogen (NOx) emissions and high fuel economy with the assistance of the di-methyl-ether (DME) fuel supplement. As a result, HCCI combustion of hydrogen mixed with 25 vol% DME achieved approximately a 30% improvement in fuel economy compared with HCCI of pure DME and spark-ignited lean-burn combustion of pure hydrogen under almost zero NOx emissions and low hydrocarbon (HC) emissions. This is attributed to control of the combustion process to attain the optimum onset of combustion and to a reduction of cooling losses.
Technical Paper
Mitsuyoshi Kamiya, Toshiaki Kobayashi, Yuji Mihara, Tsuneo Someya
Using small thin-film pressure sensors deposited onto a piston skirt surface, oil-film pressure on the piston skirt surface is measured when piston slap noise is generated without affecting the surface geometry, stiffness and mass of the piston. Under a no-load firing engine condition and at low temperature, the measured oil-film pressure corresponded well to the measured acceleration of the cylinder liner, which is indicative of piston slap noise, confirming the validity of the present method. Moreover, the oil-film pressure distribution on the skirt surface was measured for different engine speeds and piston pin offsets, which enabled more insight to be provided into piston secondary motion than that by considering the effects of cylinder liner acceleration.
Technical Paper
Kwang-soo Kim, Thom Godward, Masaaki Takiguchi, Shuma Aoki
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
Technical Paper
Kwang-soo Kim, Paras Shah, Masaaki Takiguchi, Shuma Aoki
This paper deals with the friction performance results for various new concept piston skirt profiles. The program was conducted under the assumption that friction performance varies by the total amount of oil available at each crank angle in each stroke and the instantaneous distribution of the oil film over the piston skirt area. In previous papers [1,2] it was that lower friction designs would be expected to show higher skirt slap noise. This paper discusses the correlation between friction and skirt slap for each new concept profile design. Finally, this paper explains the friction reduction mechanism for the test samples for each stroke of the engine cycle by observing the skirt movement and oil lubrication pattern using a visualization engine.
Technical Paper
Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, Shigeo Muranaka, Yoshiteru Enomoto
Nitrogen oxide (NOx) and particulate matter (PM) emissions of diesel vehicles are regarded as a source of air pollution, and there is a global trend to enforce more stringent regulations on these exhaust gas constituents in the early years of the 21st century. On the other hand, the excellent thermal efficiency of diesel engines is certainly a welcome attribute from the standpoints of conserving energy and curbing global warming. Recently, many research institutes around the world have been using high-efficiency direct-injection (DI) diesel engines to research emission control technologies. The authors have also been engaged in such research [1,2]. As a result of this work, we have developed a new combustion concept, called Modulated Kinetics (MK), that reduces NOx and smoke simultaneously due to low-temperature and premixed combustion characteristics, respectively, without increasing fuel consumption [3,4].
Technical Paper
Kazuya Ishiki, Shinji Oshida, Masaaki Takiguchi, Mitsuru Urabe
Exhaust-gas recirculation (EGR) causes the piston ring and cylinder liners of a diesel engine to suffer abnormal wear. The present study aimed at making clear the mechanism of wear which is induced by soot in the EGR gas. The piston ring has been chrome plated and the cylinder was made of boron steadite cast iron. Detailed observations of the ring sliding surfaces and that of the wear debris contained in lubricating oil were carried out. As a result, it was found that the wear of the top ring sliding surfaces identify abrasive wear without respect to the presence of EGR by steadite on the cylinder liner sliding surface. In addition, it is confirmed in a cutting test that soot mixed lubricating oil improved in performance as cutting oil. Based on these results, we proposed the hypothesis in the present study that ring wear is accelerated at EGR because abrasive wear increases due to a lot of soot mixed into lubricating oil improving the performance of lubricating oil as cutting oil.
Technical Paper
Kei Nakayama, Seiji Tamaki, Hiroyuki Miki, Masaaki Takiguchi
Offsetting the crankshaft axis with respect to the cylinder axis has been thought to be a method to reduce piston side force[1]. Hence the piston friction is expected to be reduced. An automotive manufacturer has already used the crankshaft offset for a production gasoline engine to improve fuel economy. The authors have conducted research into the effect of crankshaft offset on the piston friction. A single-cylinder engine was modified to have a crankshaft offset. Piston frictional force was measured in real-time by using a floating liner method. In addition, laser-induced fluorescence (LIF) technique was employed to measure oil film thickness on the piston skirt area, and a gap sensor was used to measure piston motion. As a result, the authors concluded that the effect of crankshaft offset on piston friction could not be explained only by its effect on the piston side force. In accordance with the measurement results, crankshaft offset changed piston slap motion.
Technical Paper
Yasuo Nakajima, Kimitaka Yamane, Toshio Shudo, Masaru Hiruma, Yasuo Takagi
Hybrid electric vehicle with internal combustion engine fueled with hydrogen can be a competitor to the fuel cell electric vehicle that is thought to be the ultimately clean and efficient vehicle. The objective in this research is to pursue higher thermal efficiency and lower exhaust emissions in a hydrogen-fueled engine for the series type hybrid vehicle system. Influences of compression ratio, surface / volume ratio of combustion chamber, and boost pressure on thermal efficiency and exhaust emissions were analyzed. Results showed that reduction of the surface / volume ratio by increased cylinder bore was effective to improve indicated thermal efficiency, and it was possible to achieve 44% of indicated thermal efficiency. However, brake thermal efficiency resulted in 35.5%. It is considered that an improved mechanical efficiency by an optimized engine design could increase the brake thermal efficiency largely.
Technical Paper
Hiroshi Ogawa, Shuji Kimura, Masao Koike, Yoshiteru Enomoto
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper
Tadashi Tsurushima, Akira Harada, Yuki Iwashiro, Yoshiteru Enomoto, Yasuo Asaumi, Yuzo Aoyagi
Thermodynamic characteristics of premixed compression ignition combustions were clarified quantitatively by heat balance estimation. Heat balance was calculated from temperature, mole fractions of intake and exhaust gases, mass and properties of fuels. Heat balance estimation was conducted for three types of combustion; a conventional diesel combustion, a homogeneous charge compression ignition (HCCI) combustion; fuel is provided and mixed with air in an intake pipe in this case, and an extremely early injection type PREmixed lean DIesel Combustion (PREDIC). The results show that EGR should be applied for premixed compression ignition combustion to complete combustion at lower load conditions and to control ignition timing at higher load conditions. With an application of EGR, both HCCI and PREDIC showed low heat loss characteristics at lower load conditions up to 1/2 load.
Technical Paper
Sunao Teraguchi, Wataru Suzuki, Masaaki Takiguchi, Daijiro Sato
This study has been conducted aiming at reductions of piston slap noise and piston friction loss, and effects of lubricating oil supply between the piston skirt and cylinder on diesel engine have been verified through a series of experiments. Namely, lubricating oil was supplied forcibly into the piston skirt from outside of engine, and its effects on the cylinder block vibration, piston friction force, slap motion and oil consumption have been measured. As a result, it has been verified that the supply of a small amount of oil (6mL/min) to the piston skirt reduces about 50 % of the block vibration caused by the piston slap motion in idling operation, and about 20 % of the piston friction loss in full load operation. Furthermore it has verified without giving any significant adverse effect on oil consumption.
Technical Paper
Masayuki Kunimatsu, Toshio Shudo, Yasuo Nakajima, Isao Murase
Methanol has many advantages as a fuel for fuel cells compared with hydrogen. The direct methanol type system consists of simple and compact equipment, and suited for automobile use. This research analyzed characteristics of power output and thermal efficiency in a direct methanol fuel cell. The measuring system for low concentration methanol in a water solution using the non-dispersive infrared (NDIR) was developed. Influences of electrolyte membrane thickness, cell temperature, and methanol solution concentration on power output and thermal efficiency were analyze.
Technical Paper
Toshio Shudo, Yasuo Nakajima, Koichiro Tsuga
Reformed fuel from hydrocarbons or alcohol mainly consists of hydrogen, carbon monoxide and carbon dioxide. The composition of the reformed fuel can be varied to some extent with a combination of a thermal decomposition reaction and a water gas shift reaction. Methanol is known to decompose at a relatively low temperature. An application of the methanol reforming system to an internal combustion engine enables an exhaust heat recovery to increase the heating value of the reformed fuel. This research analyzed characteristics of combustion, exhaust emissions and cooling loss in an internal combustion engine fueled with several composition of model gases for methanol reformed fuels which consist of hydrogen, carbon monoxide and carbon dioxide. Experiments were made with both a bottom view type optical access single cylinder research engine and a constant volume combustion chamber.
Viewing 1 to 30 of 47


  • Range:
  • Year: