Criteria

Text:
Display:

Results

Viewing 1 to 30 of 202
1999-10-19
Technical Paper
1999-01-5600
James T. Heineck, Stephen M. Walker
Three-component Particle Image Velocimetry (3D PIV) is a fluid velocity measurement technique that has evolved from the laboratory to become a method appropriate for use in large-scale wind tunnel testing. An example application of 3D PIV in a wind tunnel test is described. The PIV technique was applied to characterize the wake of The Ground Transportation System (GTS) model developed for the Department of Energy (DOE) Heavy Vehicle Drag Reduction (HVDR) program. The test was performed in the Ames/Army 7×10 foot wind tunnel. The objective of the PIV measurements was to validate the HVDR computational fluid dynamics code. The PIV method and PIV system are described. Sample truck wake data with and without boattail attachments are shown. 3D PIV system successfully captured the effects of the boattails on the truck wake.
1999-10-19
Technical Paper
1999-01-5601
James H. Bell
The desire to provide integrated surface pressures for aerodynamic loads measurements has been a driving force behind the development of pressure-sensitive paint (PSP). To demonstrate the suitability of PSP for this purpose, it is not sufficient to simply show that PSP is accurate as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where pressure taps are rarely installed. Thus, PSP results will appear good compared to the taps, but will yield inaccurate results when integrated. A more stringent technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper describes a simple integration method for PSP data and presents comparisons of balance and PSP results for three experiments. PSP is shown quite accurate for normal force measurements, but less effective at determining axial force and moments.
1999-10-19
Technical Paper
1999-01-5559
Steven M. Nash, Stuart E. Rogers
An overset grid approach is used to analyze a 3-element trapezoidal wing high-lift configuration. A new software system was developed to automate the overset computational fluid dynamics process. A three-dimensional grid resolution study is conducted, and comparisons of numerical results are made to experimental data which were obtained after the simulations. Comparisons between numerical and experimental data are in good agreement for the lift coefficient over a wide range of angles of attack, up to and including CLmax. Comparisons of chordwise distributions of the pressure coefficient between numerical and experimental data are in good agreement for all three elements, except the lift is under-predicted for the tip region when the wing is near CLmax.
1999-10-19
Technical Paper
1999-01-5567
Walter W. Johnson, Vernol Battiste, Sheila Holland Bochow
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
1999-10-19
Technical Paper
1999-01-5576
Marianne Mosher, Michael E. Watts, Michael Barnes, Jorge Bardina
A processing system has been developed to meet increasing demands for detailed noise measurement of aircraft in wind tunnels. Phased arrays enable spatial and amplitude measurements of acoustic sources, including low signal-to-noise sources not measurable by conventional measurement techniques. The Microphone Array Phased Processing System (MAPPS) provides processing and visualization of acoustic array measurements made in wind tunnels. The system uses networked parallel computers to provide noise maps at selected frequencies in a near real-time testing environment. The system has been successfully used in two subsonic, hard-walled wind tunnels, the NASA Ames 7- by 10-Foot Wind Tunnel and the NASA Ames 12-Foot Wind Tunnel. Low level airframe noise that can not be measured with traditional techniques was measured in both tests.
2004-07-19
Technical Paper
2004-01-2577
Luis F. Rodriguez, Alan E. Drysdale, Harry W. Jones, Julie A. Levri
The ALS Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Compounding the problem is the slow rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the slow rate at which new configurations are developed. This limits the search space and potentially gives the impression of a stalled research and development program. Without significant increases in the state of the art of ALS technology, the ALS goals involving the Metric may remain elusive. A paper previously presented at his meeting entitled, “Managing to the metric: An approach to optimizing life support costs.” A conclusion of that paper was that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions.
2009-07-12
Technical Paper
2009-01-2343
Ric Alba, J. Fisher, J. Hogan, T. Liggett, R. Devaney, T. Fox, J. Rask, N. Hall, E. Anderson, D. Althausen, U. Hegde, J. Mackey. R. May, Z. Yuan
The Flexible Membrane Commode (FMC) is an alternative waste management system designed to address the severe mass restrictions on the Orion vehicle. The concept includes a deployable seat and single use, three layer bags that employ air flow to draw solids away from the body and safely contain them in disposable bags.1 Simulated microgravity testing of the system was performed during two separate parabolic flight campaigns in July and August of 2008. Experimental objectives included verifying the waste fill procedures in reduced gravity, characterizing waste behavior during the filling process, and comparison of the results with model predictions. In addition the operational procedure for bag installation, removal, and sealing were assessed. 2 A difficult operational requirement concerns the delivery of the fecal waste simulant into the upper area of the bag in a manner that faithfully simulates human defecation.
2009-07-12
Technical Paper
2009-01-2344
Z.-G. Yuan, U. Hegde, D. Althausen, J. Mackey, N. Hall, W. Duval, R. Alba, E. Litwiller, J. Hogan, T. Liggett, R. Devaney, T. Fox, J. Rask, K. Wignarajah, J. Fisher
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
2009-07-12
Technical Paper
2009-01-2586
James Chartres, Brian Koss, Chad Brivkalns, Bruce Webbon, Barbara Romig, Charles Allton
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
2009-07-12
Technical Paper
2009-01-2447
Thérèse Huning, Immanuel Barshi, Lacey Schmidt
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. ISS flight controller certification has evolved to include a balanced focus on the development of team performance and technical expertise. The latest challenge the ISS team faces is how to certify an ISS flight controller to the required level of effectiveness in one year. Space Flight Resource Management (SFRM) training, a NASA adapted variant of Crew Resource Management (CRM), is expanding the role of senior flight controllers as mentors to help meet that challenge. This paper explains our mentoring approach and discusses its effectiveness and future applicability in promoting SFRM/CRM skills.
2009-07-12
Technical Paper
2009-01-2487
W. Duval, N. Hall, J. Mackey, D. Althausen, A. Izadnegahdar, E. Litwiller, M. Flynn
We consider the heat transfer characteristics of an ideal concentric disk used in the Wiped-Film Rotating-Disk (WFRD) evaporator for the Vapor Phase Catalytic Ammonia Removal (VPCAR) water recovery system. A mathematical model is derived to predict the radial temperature distribution and its average over the surface of the disk as a function of system parameters. The model shows self-similarity of the temperature distribution and the existence of a dimensionless parameter S (ratio of heat flux to convection) that can be used as a criterion to optimize the thermal characteristics of the disk in order to approach uniform surface temperature. Comparison of the model to experimental data using global (infrared imager) and local (resistive temperature devices) measurements shows that agreement with the model depends on the ambient condition denoted by the local heat transfer coefficient.
2009-07-12
Technical Paper
2009-01-2493
Harry Jones
Dynamic modeling and simulation of recycling space life support is necessary to determine processing rates, buffer sizes, controls, and other aspects of systems design. A common approach is to develop an overall inclusive model that reflects nominal system operation. A full dynamic simulation of space life support represents many system elements in an inclusive model, but it cannot and should not include everything possible. A model is a simplified, partial, mathematical representation of reality. Including unnecessary elements makes the model complex, costly, and confusing. Models are built to help understand a system and to make predictions and decisions about it. The best and most useful models are developed to answer specific important questions. There are many possible questions about life support design and performance. Different questions are best answered by different models. Static spreadsheet analysis is a good starting point.
2009-07-12
Technical Paper
2009-01-2513
Julie A. Levri, John A. Hogan, Bruce Deng, Jon Welch, Mike Ho
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
2008-06-29
Technical Paper
2008-01-2108
Mary K. Kaiser, Albert J. Ahumada
Current plans to conduct operations near the lunar poles will result in low sun angles, exacerbating visual problems associated with shadowing and glare. We discuss the perceptual challenges these conditions will present to the human explorers, and consider some possible mitigations and countermeasures.
2008-06-29
Technical Paper
2008-01-2106
Jessica J. Marquez, Jeffrey W. McCandless, Trent Thrush, William B. Toscano, John Ulman, Thomas E. Diegelman
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
2008-06-29
Technical Paper
2008-01-2141
Lance Delzeit, Michael Flynn
The Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology has undergone long duration testing at MSFC. The results of this testing revealed several areas in which the VPCAR Technology could be improved and those improvements are summarized here. These improvements include the replacement of several parts with units that are more durable, redesign of several pieces which proved to have mechanical weaknesses, and incorporation of some new designs in order to prevent other potential problems.
2008-06-29
Technical Paper
2008-01-2145
Michael Flynn, Jesse Fusco, Mark Kliss, Sherwin Gormly, Tra-My Justine Richardson, Ami Hannon, Kevin Howard, Tzahi Y. Cath, V. Dean Adams, Amy E. Childress
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
2005-07-11
Technical Paper
2005-01-2916
Harry Jones
The purpose of NASA's Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.
2005-07-11
Technical Paper
2005-01-2961
Nicola Muscettola, David Kortenkamp, Chuck Fry, Scott Bell
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster, simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods.
2005-07-11
Technical Paper
2005-01-2946
Jing Li, John Fisher, Kanapathipillai Wignarajah
One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored.
2005-07-11
Technical Paper
2005-01-2810
Harry Jones, Mark Kliss
This paper considers system design and technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The ultimate objective is to identify the air and water technologies likely to be used for the vision for space exploration and to suggest alternate technologies that should be developed. The approach is to conduct a preliminary systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then to define the functional architecture, review the current International Space Station (ISS) technologies, and suggest alternate technologies.
2005-11-01
Technical Paper
2005-01-3525
Bruce L. Storms, Dale R. Satran, James T. Heineck, Stephen M. Walker
The 1/8-scale Generic Conventional Model was studied experimentally in two wind tunnels at NASA Ames Research Center. The investigation was conducted at a Mach number of 0.15 over a Reynolds number range from 1 to 6 million. The experimental measurements included total and component forces and moments, surface pressures, and 3-D particle image velocimetry. Two configurations (trailer base flaps and skirts) were compared to a baseline representative of a modern tractor aero package. Details of each configuration provide insight into the complex flow field and the resulting drag reduction was found to be sensitive to Reynolds number.
2007-07-09
Technical Paper
2007-01-3245
Bruce Webbon, Bernadette Luna, Jeff Brown, Andy Gonzales, Harry Jones, Brian Koss, Doug Smith
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
2007-07-09
Technical Paper
2007-01-3265
Gregory S. Pace, John Hogan, John Fisher
Waste management is a critical component of life support systems for manned space exploration. Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. The requirements for waste systems may vary according to specific mission scenarios but all waste management operations must allow for the effective collection, containment, processing, and storage of unwanted materials. NASA's Crew Exploration Vehicle usually referred to as the CEV, will have limited volume for equipment and crew. Technologies that reduce waste storage volume free up valuable space for other equipment. Waste storage volume is a major driver for the Orion waste compactor design. Current efforts at NASA Ames Research Center involve the development of two different prototype compactors designed to minimize trash storage space.
2007-07-09
Technical Paper
2007-01-3264
Eric Litwiller, John Hogan, Travis Liggett, John Fisher, Ric Alba
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
2007-07-09
Technical Paper
2007-01-3262
Lance Delzeit, John W. Fisher
The initial concepts and construction of a three layered, water-absorbent, zero-G, compactor trash bag will be described. This bag is composed of an inner wicking layer, a middle absorbent layer, and an outer containment layer. The primary properties of the wicking layer are the fast adsorption of any free liquid released within the trash bag and the lateral spreading of this liquid around the interior of the bag. The absorbent layer sequesters and stores the liquid captured by the wicking layer. It need not be as fast acting as the wicking layer, but has to have a much larger capacity. The containment layer allows for handling of the bag without worry of releasing the contents. The combined strength of the three layers needs to be sufficient to withstand the forces exerted by the compactor.
2006-07-17
Technical Paper
2006-01-2190
Julie A. Levri, John A. Hogan, Rich Morrow, Michael Ho, Bob Kaehms, Jon Welch, Kim Chan, Jim Cavazzoni, Dawn R. Whitaker
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
2006-07-17
Technical Paper
2006-01-2189
Harry Jones
This work presents a simple and useful project process model. The project model directly shows how a few basic parameters determine project duration and cost and how changes in these parameters can improve them. Project cost and duration can be traded-off by adjusting the work rate and staffing level. A project's duration and cost can be computed on the back of an envelope, with an engineering calculator, or in a computer spreadsheet. The project model can be simulated dynamically for further insight. The project model shows how and why projects can greatly exceed their expected duration and cost. Delays and rework requirements may create work feedback loops that increase cost and schedule in non-proportional and non-intuitive ways.
2006-07-17
Technical Paper
2006-01-2191
Harry Jones, Mark Kliss
Stored air and water will be sufficient for Crew Exploration Vehicle visits to the International Space Station and for brief missions to the moon, but an air and water recycling system will be needed to reduce cost for a long duration lunar base and for exploration of Mars. The air and water recycling system developed for the International Space Station is substantially adequate but it has not yet been used in operations and it was not designed for the much higher launch costs and reliability requirements of moon and Mars missions. Significant time and development effort, including long duration testing, is needed to provide a flawless air and water recycling system for a long duration lunar base. It would be beneficial to demonstrate air and water recycling as early as the initial lunar surface missions.
2006-07-17
Technical Paper
2006-01-2185
Zeng-Guang Yuan, Uday Hegde, Eric Litwiller, Michael Flynn, John Fisher
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)- driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Viewing 1 to 30 of 202

Filter

  • Range:
    to:
  • Year: