Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 139
2004-07-19
Technical Paper
2004-01-2322
S. A. Walker, J. Tweed, J. W. Wilson, R. K. Tripathi
The development of a Green’s function approach to ion transport greatly facilitates the modeling of laboratory radiation environments and allows for the direct testing of transport approximations of material transmission properties. Using this approach radiation investigators at the NASA Langley Research Center have established that simple solutions can be found for HZE ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift and dispersion associated with nuclear events. In a more recent publication it was shown how these effects can be incorporated into the multiple fragmentation perturbation series. Analytical approximations for the first two perturbation terms were presented and the third term was evaluated numerically.
1999-10-19
Technical Paper
1999-01-5622
Jeremy S. Agte, Jaroslaw Sobieszczanski-Sobieski, Robert R. Sandusky
New optimization methods that are intended as an improvement over traditional design methodology often require the design model itself to be developed in a nontraditional manner. This paper describes the tailoring of a supersonic business jet design model to the Bi-Level Integrated System Synthesis (BLISS) optimization method. Included is a brief discussion of BLISS, the development and implementation of the design model, application of the design constraints, and a survey of favorable results. For discussion purposes, the design model is ‘tailored’ to the optimization method, not vice versa, to illustrate the model’s unique development.
1999-10-19
Technical Paper
1999-01-5599
James F. Meyers, Joseph W. Lee
While the initial development phase of Doppler Global Velocimetry (DGV) has been successfully completed, there remains a critical next phase to be conducted, namely the determination of an error budget to provide quantitative bounds for measurements obtained by this technology. This paper describes a laboratory investigation that consisted of a detailed interrogation of potential error sources to determine their contribution to the overall DGV error budget. A few sources of error were obvious; e.g., Iodine vapor absorption lines, optical systems, and camera characteristics. However, additional non-obvious sources were also discovered; e.g., laser frequency and single-frequency stability, media scattering characteristics, and interference fringes. This paper describes each identified error source, its effect on the overall error budget, and where possible, corrective procedures to reduce or eliminate its effect.
1999-10-19
Technical Paper
1999-01-5515
James L. Hunt, Robert J. Pegg, Dennis H. Petley
This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.
2011-06-13
Technical Paper
2011-38-0065
Andy P. Broeren, Sam Lee, Gautam H. Shah, Patrick C. Murphy
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
2011-06-13
Technical Paper
2011-38-0041
Douglas Spangenberg, Patrick Minnis, William Smith, Fu-Lung Chang
Cloud properties retrieved from satellite data are used to diagnose aircraft icing threat in single layer and multilayered ice-over-liquid clouds. The algorithms are being applied in real time to the Geostationary Operational Environmental Satellite (GOES) data over the CONUS with multilayer data available over the eastern CONUS. METEOSAT data are also used to retrieve icing conditions over western Europe. The icing algorithm's methodology and validation are discussed along with future enhancements and plans. The icing risk product is available in image and digital formats on NASA Langley ‘s Cloud and Radiation Products web site, http://www-angler.larc.nasa.gov.
2005-07-11
Technical Paper
2005-01-2831
G. De Angelis, F. F. Badavi, J. M. Clem, S. R. Blattnig, M. S. Clowdsley, J. E. Nealy, R. K. Tripathi, J. W. Wilson
In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon’s radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions, namely on the Apollo 12 from the Oceanus Procellarum landing site. Subsurface environments like lava tubes have been considered in the analysis.
2007-07-09
Technical Paper
2007-01-3243
Ruth M. Amundsen, John A. Dec, Joseph F. Gasbarre
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
2007-07-09
Technical Paper
2007-01-3244
John A. Dec, Joseph F. Gasbarre, Ruth M. Amundsen
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
2006-07-17
Technical Paper
2006-01-2147
J. Tweed, S. A. Walker, J. W. Wilson, R. K. Tripathi, F. A. Cucinotta, F. F. Badavi
A new Green’s function code (GRNTRN) capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Recent publications have focused on code validation in the laboratory environment and have shown that the code predicts energy loss spectra accurately as measured by solid-state detectors in ion beam experiments. In this paper emphasis is placed on code validation with space boundary conditions.
2007-07-09
Technical Paper
2007-01-3118
J. Tweed, S. A. Walker, J. W. Wilson, R. K. Tripathi, F. F. Badavi, J. Miller, C. Zeitlin, L. H. Heilbronn
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
2007-07-09
Technical Paper
2007-01-3110
Brooke Anderson, Steve Blattnig, Martha Clowdsley
Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure.
1992-04-01
Technical Paper
921036
Thomas J. Yager, Pamela A. Davis, Sandy M. Stubbs, Veloria J. Martinson
Preliminary braking, steering, and tread wear performance results from testing of 26 x 6.6 and 40 x 14 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program involving these two different tire sizes as well as an H46 x 18-20 tire size which has not yet been evaluated. Both dry and wet surface conditions were evaluated on two different test surfaces - nongrooved Portland cement concrete and specially constructed, hexagonal-shaped concrete paver blocks. Use of paver blocks at airport facilities has been limited to ramp and taxiway areas and the industry needs a tire friction evaluation of this paving material prior to additional airport pavement installations.
1992-10-01
Technical Paper
922038
Robert H. Daugherty, Sandy M. Stubbs
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented.
1992-07-01
Technical Paper
921370
Lisa C. Simonsen, John E. Nealy, Lawrence W. Townsend
1989-09-01
Technical Paper
892338
Robert H. Daugherty, Sandy M. Stubbs
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
1995-05-01
Technical Paper
951175
F. Bruce Metzger, John S. Preisser
This paper reviews the status of analytical and empirical propeller noise prediction methods with specific emphasis on those that are suitable for General Aviation propellers. Specifically, the paper reviews the capabilities and limitations of methods that are simple enough for ease of use by industry while providing sufficient accuracy to guide the development of new propeller designs or the modification of existing propeller driven airplanes to satisfy increased certification stringency or cabin comfort objectives.
1995-05-01
Technical Paper
951168
Lisa E. Jones, Huey D. Carden
As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Dynamics Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats were substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher than those recorded under similar conditions for an all-metallic aircraft.
1990-09-01
Technical Paper
901936
William K. Abeyounis, James C. Patterson, H. Paul Stough, Alfred J. Wunschel, Patrick D. Curran
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
1996-07-01
Technical Paper
961581
J. W. Wilson, F. A. Cucinotta, J. Miller
The highly inclined orbit of the International Space Station Alpha exhibits significant radiation exposure contributions from the galactic cosmic rays penetrating the earth's magnetic field. In the absence of an accepted method for estimating the corresponding astronaut risk, we examined the attenuation characteristics using conventional LET dependent quality factors (as one means of representing RBE) and a track-structure repair model fit to cell transformation (and inactivation) data in the C3H10T1/2 mouse cell system obtained by T. C. Yang and coworkers for various ion beams. Although the usual aluminum spacecraft shield is effective in reducing dose equivalent with increasing shield thickness, cell transformation rates are increased for thin aluminum shields providing increased risk rather than protection to large shield thickness.
1994-03-01
Technical Paper
941247
Charles E. Harris, James H. Starnes, Joseph S. Heyman
Abstract An advanced analytical methodology has been developed for predicting the residual strength of stiffened thin-sheet riveted shell structures such as those used for the fuselage of a commercial transport aircraft. The crack-tip opening angle elastic-plastic fracture criterion has been coupled to a geometric and material nonlinear finite element shell code for analyzing complex structural behavior. An automated adaptive mesh refinement capability together with global-local analysis methods have been developed to predict the behavior of fuselage structure with long cracks. This methodology is currently being experimentally verified. Advanced nondestructive inspection technology has been developed that will provide airline operators with the capability to conduct reliable and economical broad-area inspections of aircraft structures.
1994-06-01
Technical Paper
941464
John B. Hall, Carolyn C. Thomas
Alternate Environmental Control and Life Support System (ECLSS) technologies were evaluated to reduce Space Station resources and dependence on expendables resupplied from Earth to sustain a multiperson crew in low-Earth orbit. Options were evaluated to close the oxygen (O2) loop by removing carbon dioxide (CO2) from the cabin air, reducing the CO2 to water, and electrolyzing the water to provide metabolic O2 for crew consumption. Options were also evaluated to close the urine/flush, condensate, and hygiene water loops to provide potable water for crew use. Specific evaluation parameters were derived which included weight, power, volume, maintenance, resupply consumables, and technology readiness.
1993-07-01
Technical Paper
932039
Kelli F. Willshire, Lisa C. Simonsen
Human factors egress testing of the HL-20 Personnel Launch System, a reusable flight vehicle for Space Station crew rotation, was conducted in both the vertical (launch) and horizontal (landing) positions using a full-scale model. Ingress and egress of 10-person crews were investigated with volunteers representing a range of heights. For both the vertical and horizontal positions, interior structural keels had little impact on egress times which were generally less than 30 seconds. Wearing Shuttle partial pressure suits required somewhat more egress time than when ordinary flight suits were worn due to the larger helmet of the Shuttle suit.
1993-09-01
Technical Paper
932632
Eric R. Unger, Peter G. Coen
This paper describes recent research in integrated aerodynamic-performance design optimization applied to a supersonic transport wing. The subsonic and supersonic aerodynamics are modeled with linear theory and the aircraft performance is evaluated by using a complete mission analysis. The goal of the optimization problem is to either maximize the aircraft range or minimize the take-off gross weight while constraining the total fuel load and approach speed. A major difficulty encountered during this study was the inability to obtain accurate derivatives of the aerodynamic models with respect to the planform shape. This work addresses this problem and provides one solution for the derivative difficulties. Additional optimization studies reveal the impact of camber design on the global optimization problem. In these studies, the plan-form optimization is first conducted on a flat plate wing and camber optimization is performed on the resulting planform.
1993-09-01
Technical Paper
932582
Thomas J. Yager, Sandy M. Stubbs, W. Edward Howell, Granville L. Webb
Recent findings from NASA Langley tests to define effects of aircraft Type II chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32-96 km/hr (20-60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
1991-09-01
Technical Paper
912114
Y. S. Wie, F. S. Collier, R. D. Wagner
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
1999-04-20
Technical Paper
1999-01-1579
H. Paul Stough, Marianne Rudisill, Philip R. Schaffner, Konstantinos S. Martzaklis
President Clinton announced in February 1997 a national goal to reduce the fatal accident rate for aviation by 80% within ten years. Weather continues to be identified as a causal factor in about 30% of all aviation accidents. An Aviation Weather Information Distribution and Presentation project has been established within the National Aeronautics and Space Administration’s Aviation Safety Program to develop technologies that will provide accurate, timely and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project, described herein, addresses the weather information needs of general, corporate, regional, and transport aircraft operators.
2000-10-10
Technical Paper
2000-01-5525
Michael J. Logan, Joe H. Shockcor
This paper describes the results of a Joint NASA/DoD Scenario-Based Systems Study conducted as part of the DoD Fixed-Wing Vehicle Technology Program. The study investigated both the impact and robustness of specific technology sets to a variety of airlift, bomber, and patrol aircraft concepts. The impacts of these technology sets were developed by measuring the changes in a set of measures of merit, which represented cost vs. capability metrics. The changes in the metrics were then evaluated within the context of a number of future “scenarios” to determine how robust these impacts would be across a variety of possible future conditions. A database was developed which allows the evaluation or ranking of the technology sets from a variety of perspectives.
2000-05-09
Technical Paper
2000-01-1707
Dan Palumbo, Ran Cabell
This paper summarizes the development of an approach to optimizing the locations for arrays of sensors and actuators in active noise control systems. A type of directed combinatorial search, called Tabu Search, is used to select an optimal configuration from a much larger set of candidate locations. The benefit of using an optimized set is demonstrated. The importance of limiting actuator forces to realistic levels when evaluating the cost function is discussed. Results of flight testing an optimized system are presented. Although the technique has been applied primarily to Active Structural Acoustic Control systems, it can be adapted for use in other active noise control implementations.
2000-05-09
Technical Paper
2000-01-1691
H. Paul Stough, Daniel J. DiCarlo
With the resurgence of the General Aviation industry, the incentive to develop new airplanes for the low-end market has increased. Increased production of small airplanes provides the designers and manufacturers the opportunity to incorporate advanced technologies that are not readily retrofitable to existing designs. Spin resistance is one such technology whose development was concluded by NASA during the 1980’s when the production of small airplanes had slipped into near extinction. This paper reviews the development of spin resistance technology for small airplanes with emphasis on wing design. The definition of what constitutes spin resistance and the resulting amendment of the Federal Aviation Regulations Part 23 to enable certification of spin resistant airplanes are also covered.
Viewing 1 to 30 of 139

Filter

  • Range:
    to:
  • Year: