Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Rapid Cycling CO2 and H2O Removal Sorbent

2007-07-09
2007-01-3271
The National Aeronautics and Space Administration's (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility for Extravehicular Activity (EVA) duration and objectives. Use of regenerable systems that reduce weight and volume of the space suit life support system is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the EVA with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced.
Technical Paper

Active Thermal Control Systems for Lunar and Martian Exploration

1990-07-01
901243
Extended manned missions to the lunar and martian surfaces pose new challenges for active thermal control systems (ATCS's). Moderate-temperature heat rejection becomes a problem during the lunar day, when the effective sink temperature exceeds that of the heat-rejection system. The martian atmosphere poses unique problems for rejecting moderate-temperature waste heat because of the presence of carbon dioxide and dust. During a recent study, several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators.
Technical Paper

Rapid Cycling CO2 and H2O Removal System for EMU

2006-07-17
2006-01-2198
Future National Aeronautics and Space Administration (NASA)-planned missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. TDA Research, Inc. (TDA) is developing a high capacity, rapid cycling sorbent to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Conceptual Design of a Piloted Mars Sprint Life Support System

1988-07-01
881059
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse. MANNED MISSIONS TO THE PLANET MARS are included in the present NASA plans for the first decade of the next century [1]*. The first step of human exploration and eventual settlement on Mars will probably be a series of fast missions (“sprints”), with a duration of just over one year, round trip [2].
Technical Paper

A Fuel Cell Energy Storage System Concept for the Space Station Freedom Extravehicular Mobility Unit

1989-07-01
891582
The paper gives an update on an advanced development effort carried out under NASA Johnson Space Center (NASA/JSC) NAS 9-17775 by Ergenics Power Systems, Inc. (EPSI). The work was initiated in April 1987 to design and build a Fuel Cell Energy Storage System (FCESS) bench-test unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are its main attributes. Design and performance of a non-venting 28V, 34 Ahr system with 7 amp rating are discussed. The FCESS is comprised of a 32-cell proton exchange membrane (PEM) stack, a metal hydride storage vessel and a control subsystem. The stack design incorporates passive product-water removal and thermal integration with the hydride vessel. The hydride vessel stores enough fuel for 5 hours.
X