Viewing 1 to 26 of 26
Technical Paper
Clint Baggerman, Mary McCabe, Dinesh Verma
It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA's Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability.
Technical Paper
Luis F. Rodríguez, Haibei Jiang, Scott Bell, David Kortenkamp
BioSim is a simulation tool which captures many basic life support functions in an integrated simulation. Conventional analyses can not efficiently consider all possible life support system configurations. Heuristic approaches are a possible alternative. In an effort to demonstrate efficacy, a validating experiment was designed to compare the configurational optima discovered by heuristic approaches and an analytical approach. Thus far, it is clear that a genetic algorithm finds reasonable optima, although an improved fitness function is required. Further, despite a tight analytical fit to data, optimization produces disparate results which will require further validation.
Technical Paper
Evan Thomas, John Graf, Jeff Sweterlitsch, Mark Weislogel
During Lunar missions, NASA's new Orion Crew Exploration Vehicle (CEV) may benefit from mass savings and increased reliability by the use of a passive, capillary-driven Static Phase Separator (SPS) for urine collection, containment, and disposal in place of a rotary-fan separator and wastewater storage tank. The design of a capillary separator addresses unique challenges for microgravity fluid management for liquids with a wide range of possible contact angles and high air-to-liquid flow ratio. This paper presents the iterative process leading to a successful test in a reduced gravity aircraft of the SPS concept. Using appropriately scaled test conditions, the resulting prototype allows for a range of wetting properties with complete separation of liquid from gas.
Technical Paper
James R. Akse, John O. Thompson, Richard L. Sauer, Laurie A. Aten
A computer interfaced instrument designed to quantify ammonia and other nitrogenous species that are important regenerative life support water quality parameters is described in this paper. Measurements can be made either discretely by Flow Injection Analysis (FIA) or continuously using a split stream from a process flow. The monitor exhibits a predictable quadratic response for ammonia injections between 10 μg/L to 20 mg/L with a response time less than six minutes. A full description of the ammonia monitor's response to a variety of challenge solutions including real sewage treatment plant effluent is given. In addition, the response time characteristics, the effects of temperature, and interferences are described.
Technical Paper
Liese Dall-Bauman, Frank Jeng, Steve Christian, Marybeth Edeer, Chin Lin
To support manned lunar and Martian exploration, NASA/JSC and LESC are conducting an extensive evaluation of air revitalization subsystems. The major operations under study include regenerative CO2 removal and reduction; O2 and N2 production, storage, and distribution; humidity and temperature control; and trace contaminant control. This paper describes the ongoing analysis of air revitalization subsystems, including ASPEN PLUS™ modeling and breadboard test stand operation. A comprehensive analysis program based on a generalized block flow model is currently being developed to facilitate the evaluation of various processes and their interactions. Future plans for the development of this simulation will be discussed. ASPEN PLUS™ has been used to model a variety of the subsystems described above; application of this package in modeling CO2 removal and reduction will be discussed.
Technical Paper
Marybeth A. Edeen, Daniel J. Barta, Robert Spanarkel
An 84 day wheat crop was grown in the Variable Pressure Growth Chamber (VPGC) at Johnson Space Center (JSC). The VPGC is an atmospherically closed, controlled environment facility used to evaluate the use of higher plants as part of a regenerative life support system. The chamber has 10.6 m2 of growing area consisting of 480 pots of calcined clay support media. The chamber is lit by very high output, cool white fluorescent bulbs. Five wheat seeds were planted per pot giving a seeding density of 227 seeds·m-2. Pots were irrigated with a modified half strength Hoagland's nutrient solution three or six times per day depending on the crop age. At the plant canopy, the average temperature during the test was 22 ° C, relative humidity was maintained at 69%, CO2 concentration was 1000 ppm, photoperiod was continuous light, and the light intensity averaged 350 μmol·m-2·s-1.
Technical Paper
Paul D. Mudgett, John R. Schultz, Kris K. Cyrus, Ketan S. Chhipwadia, Nigel J. Packham
Two portable, collapsible water storage containers were developed to enable water logistics and storage on ISS. The first is a new version of the 44-liter Contingency Water Container (CWC) originally developed for the Shuttle Program. The new CWC uses a thicker Combitherm® film, VPCXX 140, as the bladder material. The second is a multipurpose 10-liter vessel, known as the Payload Water Reservoir (PWR), with a Teflon® bladder. Both of these collapsible vessels have Nomex® outer restraints for structural support, allowing them to withstand pressurization and resist puncture. The results of material longevity tests, the design and development of the two containers are briefly reported, and current and future water, wastewater, coolant and experiment fluid storage applications for the ISS are described.
Technical Paper
Jennifer D. Villarreal, Terry O. Tri
The BIO-Plex is a key component in the testing capability of NASA’s Advanced Life Support (ALS) Program. BIO-Plex will serve as a test facility capable of supporting long duration evaluations of integrated systems that produce food, purify water, regenerate oxygen, and supply clean air to human test crews. The major test facility is comprised of a set of interconnected chambers with a sealed internal environment, which will be capable of supporting test crews of four individuals for periods exceeding one year. In this tightly controlled, closed loop system, hypogravity compatible life support systems for use on planetary surfaces such as Mars or the Moon will be evaluated during long duration tests with human subjects inside the BIO-Plex at Johnson Space Center (JSC).
Technical Paper
Mark E. Homan, John R. Schultz, Richard L. Sauer
An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper
D.W. Koenig, D. M. Bell-Robinson, V. A. Valadez, D. L. Pierson
The first two phases of the Lunar-Mars Life Support Test Project [LMLSTP] involved housing human volunteers in closed chambers that mimic future extraterrestrial life support systems. The Phase I test involved one person living for 15 days in a chamber with wheat as the primary means of air revitalization. The Phase II test involved 4 people living for 30 days in a chamber with physical/chemical air revitalization and waste water recycling. The consequences of closure on microbial ecology and the influence that microbes had on these closed environmental life support systems were determined during both tests. The air, water, and surfaces of each chamber were sampled for microbial content before, during, and after each test. The numbers of microbes on the Phase I habitation chamber surfaces increased with length of occupation.
Technical Paper
Paul D. Mudgett, John R. Schultz, Nigel J. Packham, Dennis J. Veselka, Hubert J. Brasseaux, Henry A. Rotter, Richard L. Sauer
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper
James M. McKinnie
This paper addresses fire and post-fire operational principles and techniques for extinguishing fire events aboard the US Segment of the International Space Station (ISS) through assembly mission 7A. Included is a brief description of ISS fire detection, suppression and cleanup assets. The paper reviews several fireground management fundamentals, including command and control, pre-fire planning, and the use of standard operating procedures. The majority of the paper describes fire detection, response and cleanup management and procedures, and their employment in several US fire scenarios. The paper concludes with a review of procedure validation and training techniques, and areas of open work.
Technical Paper
Rudy Trabanino, George L. Murphy, M. M. Yakut
This paper summarizes requirements, design concepts, and a baseline configuration for an Advanced Food Hardware System (AFHS) galley for the initial operating capability (IOC) Space Station. The AFHS program is being developed by McDonnell Douglas Astronautics Co (MDAC). ILC Space Systems. Whirlpool, and Hamilton Standard under contract to NASA-ISC. Space Station will employ food hardware items that have never been flown in space such as a dishwasher. microwave oven, blender/mixer, bulk food and beverage dispensers. automated food inventory management, a trash compactor. and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades. design, development, and testing associated with each are summarized. Space Station objectives and constraints that impact the design of food hardware are described as are their implications for hardware selection, design, and test.
Technical Paper
Leslie J. A. Rogers, C. Ed Whitsett, Manuel Rodriguez
This paper describes the hardware used and the experience gained during the Space Shuttle extravehicular activities (EVAs) or “spacewalks” of 1984. Seven EVAs on four missions were conducted with objectives including hardware verification, satellite repair, hydrazine transfer, and satellite retrieval. The hardware used on these flights falls into two categories - general EVA hardware (e.g. the Manned Maneuvering Unit) and mission-unique hardware (e.g. apogee kick motor capture device, used to retrieve the WESTAR VI and PALAPA B-2 satellites). The successful completion of the mission objectives resulted in an increased knowledge of EVA operations and a broader base of Space Shuttle capabilities which are applicable to future operations.
Journal Article
A. Honne, H. Schumann-Olsen, K. Kaspersen, T. Limero, A. Macatangay, H. Mosebach, D. Kampf, P. D. Mudgett, J. T. James, G. Tan, W. Supper
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Technical Paper
Evan Thomas
Concentrated wastewater brines, produced by primary stage spacecraft water recovery systems, can be further processed to recover additional usable water supply. The Lunar Surface Systems Project at NASA-JSC identified brine dewatering technologies as a critical technology need. In response, the Exploration Life Support Office commissioned a study to summarize the technologies currently available, and recommend a development roadmap for future resources. This paper reviews some of the technologies under development within the government, in academia, and private industry, and outlines a proposed development strategy to meet technology needs for the Lunar Outpost.
Technical Paper
Terry O. Tri
As a key component in its ground test bed capability, NASA’s Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions.
Technical Paper
Haibei Jiang, Kaustubh Bhalerao, Luis F. Rodríguez, Scott Bell, David Kortenkamp, Alfred Soboyejo
High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper
Thomas Filburn, W. Clark Dean, Gretchen Thomas
NASA JSC has contracted with Hamilton Standard Space Systems International (HSSSI) to develop a combined CO2/H2O removal system for an advanced space suit. This system will operate with a novel solid amine sorbent that has demonstrated a large increase in capacity over previous solid amine sorbents. The concept will use two beds of the sorbent operating on a pressure swing removal process. This paper discusses the design, fabrication and testing of this prototype system. The overall system design consists of two sorbent beds, a spool valve for directing vacuum and process air, and a controller to monitor the overall process and switch the spool valve at the appropriate time. We will include a discussion of the quick-cast process used in the fabrication of major system components. Finally, we will present the results of testing the full-scale prototype at HSSSI, and its ability to remove CO2/H2O and be regenerated continuously.
Technical Paper
Sandra F. Brasseaux, John C. Graf, John F. Lewis, Karen E. Meyers, Melissa L. Rosenbaum, Laura N. Supra
Future long-term space missions, such as a manned mission to Mars, will require regenerative life support systems which will enable crews more self-sufficiency and less dependence on resupply. Toward this effort, a series of tests called the Lunar-Mars Life Support Test Project have been conducted as part of the National Aeronautical and Space Administration (NASA's) advanced life support technology development program. The last test in this series was the Phase III test which was conducted September 19 - December 19, 1997 in the Life Support Systems Integration Facility at the Johnson Space Center. The overall objective of the Phase III test was to conduct a 90-day regenerative life support system test with four human test subjects demonstrating an integrated biological and physicochemical life support system to produce potable water, maintain a breathable atmosphere, and maintain a shirt sleeve environment.
Technical Paper
G. M. Ehrlich, R. Gitzendanner, F. Puglia, C. Marsh, B. J. Bragg
Yardney Technical Products is developing a high energy density Li-ion cell tailored for NASA's Extravehicular Mobility Unit battery. The goal of the program is to develop a Li-ion technology which offers long storage and cycle life in a system which provides energy density and exercise performance comparable to the current 6.7kg Zn-AgO battery. The Zinc-Silver Oxide cells which are most commonly used in this application provide 400 Wh/l with a 32 cycle life at 26.6Ah and 1.55V with a rated wet life of 425 days. To improve the energy density of the Li-ion cells we have focused on improving the energy density of its components. In addition to using thin metal foil current collectors, the energy density of the cathode material was improved by utilizing a high capacity Co doped nickel oxide material. Further efforts have focused on developing a more energy dense carbonaceous anode material. The results of this effort are reviewed.
Technical Paper
Barry W. Finger, Laura N. Supra, Liese DallBauman, Karen D. Pickering
Ground-based laboratory and closed-chamber human tests have demonstrated the ability of microbial-based biological processors to effectively remove carbon and nitrogen species from regenerable life support wastewater streams. Application of this technology to crewed spacecraft requires the development of gravity-independent bioprocessors due to a lack of buoyancy-driven convection and sedimentation in microgravity. This paper reports on the development and testing of membranebased biological reactors and addresses the processing of planetary and International Space Station (ISS) waste streams. The membranes provide phase separation between the wastewater and metabolically required oxygen, accommodate diffusion-driven oxygen transport, and provide surface area for microbial biofilm attachment. Testing of prototype membrane bioprocessors has been completed.
Technical Paper
Charles T. Bourland, Vickie L. Kloeris
The Shuttle/Mir food system was based on a plan that included 50% U.S. food and 50% Russian food. Using inputs from crew evaluations, nutritional requirements, and analytical data, menus for each Long Duration Mission (LDM) were developed by the U.S. and Russian food specialists. The cosmonaut’ planned menus were identical while the astronaut’s menu differed slightly, based on personal preferences. Bonus food containers of astronaut’s favorite foods were provided to increase variety. Six out of 7 astronauts reported that the menu plan was seldom, if ever, followed. Five out of 7 astronauts ate most of their meals with the other crew members. In most cases, the bonus food containers were not opened until near the end of the mission. All crew members emphasized that variety was critical and that the use of Mir and Shuttle food together added a unique variety to the food system. Three of the 7 Mir astronauts lost significant weight during their stay on Mir.
Technical Paper
Yael Vodovotz, Charles Bourland, Vickie Kloeris, Helen Lane, Scott M. Smith
In preparation for future planetary exploration, NASA-Johnson Space Center has developed a critical path plan for food and nutrition research needs. The plan highlights the risk factors pertaining to food and nutrition associated with exposure to the space flight environment as well as the possible consequences if no corrective measures are implemented. Included in the plan are the initiating events such as microgravity, remote environment and mission duration, which obviously impact the risk factors. The plan includes points of intervention where mitigating factors can be implemented to avoid outcomes such as malnutrition and unsafe foods. Physiological changes induced by lack of gravity, as well as increased exposure to radiation, may alter nutrient bio-availability and/or nutrient requirements. An inadequate food system, whether due to technical limitations or nutritional shortcomings, can result in serious consequences.
Technical Paper
John C. Graf, Tom Filburn, Mark Lantzakis, Ed Taddey
The current regenerative CO, Removal System (RCRS) is a two sorbent bed, vacuum pressure swing, CO, adsorption/desorption system. While one bed is removing CO, and moisture from cabin air, the other bed is vented to space vacuum so that the CO, and water can be desorbed off the bed. To guard against the possibility that cabin air can be vented directly to space, 11 valves and a series of mechanical linkages control the flow paths. The RCRS has one set of adsorption beds, one fan, one compressor, and two redundant controllers. A single failure could cause a loss of function; so a contingency CO, removal system must, and is flown. A new sorbent material has been developed that greatly decreases the required size of the sorbent bed. A new valve design is proposed that replaces the complex series of valves and linkages with one moving part. Using the new bed material and new valve design, system size and weight can be cut approximately in half.
Technical Paper
Amy Ross, Joseph J. Kosmo, Barbara Janoiko, Dean Eppler
Viewing 1 to 26 of 26


    • Aerospace
    • Range:
    • Year: