Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool

2011-04-12
2011-01-0656
In the United States, intercity long-haul trucks idle approximately 1,800 hrs per year primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel [1]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to this challenge through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. To help assess and improve idle reduction solutions, the CoolCalc software tool was developed.
Technical Paper

Evaluation of Advanced Automotive Seats to Improve Thermal Comfort and Fuel Economy

2005-05-10
2005-01-2056
Automotive ancillary loads have a significant impact on the fuel economy of both conventional and advanced vehicles. Improving the delivery methods for conditioned air is an effective way to increase thermal comfort at little energy cost, resulting in reduced air-conditioning needs and fuel use. Automotive seats are well suited for effective delivery of conditioned air due to their large contact area with and close proximity to the occupants. Normally a seat acts as a thermal insulator, increasing skin temperatures and reducing evaporative cooling of sweat. Ventilating a seat has low energy costs and eliminates this insulating effect while increasing evaporative cooling. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has applied a combination of experimental testing and modeling to quantify improved thermal comfort and potential fuel savings by using a ventilated seat.
Technical Paper

Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

2015-04-14
2015-01-0351
Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
X