Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits Of Regeneration And Need For State Of Charge Correction

2000-10-16
2000-01-2955
Hybrid diesel electric buses offer the advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the need of the engine to follow load as closely as in a conventional bus. With the support of the Department of Energy (DOE), five Lockheed Martin-Orion hybrid diesel-electric buses were operated on the West Virginia University Transportable Laboratory in Brooklyn, New York. The buses were exercised through a new cycle, termed the Manhattan cycle, that was representative of today's bus use as well as the accepted Central Business District Cycle and New York Bus Cycle. Emissions data were corrected for the state of charge of the batteries. The emissions can be expressed in units of grams/mile, grams/axle hp-hr and grams/gallon fuel. The role of improved fuel economy in reducing oxides of nitrogen relative to conventional automatic buses is evident in the data.
Technical Paper

Improving the Fuel Efficiency of Light-Duty Ethanol Vehicles - An Engine Dynamometer Study of Dedicated Engine Strategies

1999-10-25
1999-01-3568
This paper describes an experimental study to determine the potential for fuel efficiency improvements offered by dedicated, high compression E85 engines with optimized powertrain calibration strategies. The study involved a prototype variable fuel engine that could operate using either gasoline or E85, and a high compression version of the same engine that was suitable only for E85. Fuel consumption and engine-out emissions were evaluated using steady-state engine dynamometer tests to represent urban and highway speed/load conditions. For each fuel and engine combination, the fuel efficiency and emissions trade-offs provided by varying Exhaust Gas Recirculation (EGR) levels were determined. For the high compression engine, operation at lower speed/higher load conditions (producing the same power as the standard speed/load settings) was also investigated.
Technical Paper

Methylal and Methylal-Diesel Blended Fuels for Use in Compression-Ignition Engines

1999-05-03
1999-01-1508
“Gas-to-liquids” catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude-derived fuels. Methylal (CH3-O-CH2-O-CH3), also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins B5.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions.
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Effect on Emissions of Multiple Driving Test Schedules Performed on Two Heavy-Duty Vehicles

2000-10-16
2000-01-2818
Chassis based emissions characterization of heavy-duty vehicles has advanced over the last decade, but the understanding of the effect of test schedule on measured emissions is still poor. However, this is an important issue because the test schedule should closely mimic actual vehicle operation or vocation. A wide variety of test schedules was reviewed and these cycles were classified as cycles or routes and as geometric or realistic. With support from the U.S. Department of Energy Office of Transportation Technologies (DOE/OTT), a GMC box truck with a Caterpillar 3116 engine and a Peterbilt over the road tractor-trailer with a Caterpillar 3406 engine were exercised through a large number of cycles and routes. Test weight for the GMC was 9,980 kg and for the Peterbilt was 19,050 kg. Emissions characterization was performed using a heavy-duty chassis dynamometer, with a full-scale dilution tunnel, analyzers for gaseous emissions, and filters for PM emissions.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
X