Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 15 of 15
2014-04-01
Journal Article
2014-01-1500
Aaron Williams, Robert McCormick, Michael Lance, Chao Xie, Todd Toops, Rasto Brezny
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
2013-04-08
Technical Paper
2013-01-0553
John Rugh, Larry Chaney, Laurie Ramroth, Travis Venson, Matthew Rose
The objective of the study was to assess the impact of a Saflex1 S Series solar control PVB (polyvinyl butyral) windshield on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cooldown analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cooldown analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and solar control PVB configurations for the city and highway drive cycles.
2013-04-08
Technical Paper
2013-01-0381
Aaron David Brooker, Jacob Ward, Lijuan Wang
In 2011, the United States imported almost half of its petroleum. Lightweighting vehicles reduces that dependency directly by decreasing the engine, braking and rolling resistance losses, and indirectly by enabling a smaller, more efficiently operating engine to provide the same performance. The Future Automotive Systems Technology Simulator (FASTSim) tool was used to quantify these impacts. FASTSim is the U.S. Department of Energy's (DOE's) high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It steps through a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains.
2006-10-16
Technical Paper
2006-01-3279
Barbara Terry, Robert L. McCormick, Mani Natarajan
An ultra-low sulfur diesel (ULSD) fuel was blended with three different biodiesel samples at 5 and 20 volume percent. The biodiesel fuels were derived from rapeseed and soybean oils, and in addition, a highly oxidized biodiesel was prepared from the soy biodiesel by oxidation under controlled conditions. A set of five elastomers commonly used in automotive fuel systems were examined before and after immersion in the six test blends and base fuel at 60°C for 1000 hours. The elastomers were evaluated for hardness, tensile strength, volume change and compression. Injector wear tests were also conducted on the base petrodiesel fuel and the biodiesel blends using a 500-hour test method developed for this study. Bosch VE (in-line) rotary pumps were evaluated for wear after testing for 500 hours on the base fuel, B5 and B20 test fuels. Additionally, a test procedure was developed to accelerate wear on common rail pumps over 500 hours.
2003-05-19
Technical Paper
2003-01-2022
John E. Orban, Hsing-Chuan Tsai, Shawn D. Whitacre
The Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) project is a joint U.S. government/industry research effort to identify optimal combinations of fuels, lubricants, engines, and emission control systems to meet projected emissions regulations during the period 2000 to 2010. APBF-DEC is conducting five separate projects involving light- and heavy-duty engine platforms. Four projects are focusing on the performance of emission control technologies for reducing criteria emissions using different fuels. This project is investigating the effects of lubricant formulation on engine-out emissions (Phase I) and the resulting impact on emission control systems (Phase II). This paper describes the statistical design and analysis methods used during Phase I of the lubricants project.
2003-06-23
Technical Paper
2003-01-2271
Valerie Hovland, Ahmad Pesaran, Richard M. Mohring, Ian A. Eason, Gregory M. Smith, Doanh Tran, Rolf Schaller, Tom Smith
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
2007-04-16
Technical Paper
2007-01-1194
John P. Rugh, Lawrence Chaney, Jason Lustbader, John Meyer
A new type of solar-reflective glass that improves reflection of the near-infrared (NIR) portion of the solar spectrum has been developed. Also developed was a prototype solar-reflective paint that increases the NIR reflection of opaque vehicle surfaces while maintaining desired colors in the visible portion of the spectrum. Both of these technologies, as well as solar-powered parked car ventilation, were tested on a Cadillac STS as part of the Improved Mobile Air Conditioning Cooperative Research Program (I-MAC). Significant reductions in interior and vehicle skin temperatures were measured. The National Renewable Energy Laboratory (NREL) performed an analysis to determine the impact of reducing the thermal load on the vehicle. A simplified cabin thermal/fluid model was run to predict the potential reduction in A/C system capacity. The potential reduction in fuel use was calculated using a vehicle simulation tool developed by the U.S. Department of Energy (DOE).
2009-06-15
Journal Article
2009-01-1790
Matthew J. Thornton, Teresa L. Alleman, Jon Luecke, Robert L. McCormick
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
2015-04-14
Journal Article
2015-01-1709
Daniel Leighton
Abstract Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
1999-03-01
Technical Paper
1999-01-0461
Steven D. Burch, John P. Biel
In previous SAE papers, the initial development and testing of a vacuum-insulated catalytic converter was presented. This paper provides an update of the converter development and an analysis of potential off-cycle emissions savings. Hot vibration, cool-down, and 1975 Federal Test Procedure (FTP-75) emissions test results are provided to demonstrate the effectiveness of design improvements in greatly increasing durability while retaining performance. Using standard drive cycles and “real-world” driving statistics with a vehicle simulator (ADVISOR©), catalyst temperature and vehicle exhaust emissions of a sport utility vehicle (SUV) were predicted for 16 days of driving (107 trips, 770 total miles). Compared to the baseline vehicle with a conventional catalytic converter, the SUV with a vacuum-insulated converter produced 66% less non-methane hydrocarbon (NMHC), 65% less carbon monoxide (CO), and 60% less oxides of nitrogen (NOx).
2001-05-14
Technical Paper
2001-01-1734
Terry J. Hendricks
The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date.
2001-05-14
Technical Paper
2001-01-2068
Kevin Walkowicz, Denny Stephens, Kevin Stork
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
2001-03-05
Technical Paper
2001-01-0512
Sougato Chatterjee, Carl McDonald, Ray Conway, Hassan Windawi, Keith Vertin, Chuck A. LeTavec, Nigel Clark, Mridul Gautam
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
2001-09-24
Technical Paper
2001-01-3523
Paul I. Lacey, Selda Gunsel, Jose De La Cruz, Margaret V. Whalen
While standardized laboratory-scale wear tests are available to predict the lubricity of liquid fuels under ambient conditions, the reality is that many injection systems operate at elevated temperatures where fuel vaporization is too excessive to perform the measure satisfactorily. The present paper describes a High Pressure High Frequency Reciprocating Rig (HPHFRR) purposely designed to evaluate fuel lubricity in a pressurized environment at temperatures of up to 300°C. The remaining test parameters are identical to those of the widely standardized High Frequency Reciprocating Rig (HFRR). Results obtained using the HPHFRR indicate that wear rate with poor lubricity fuels is strongly sensitive to both temperature and oxygen partial pressure and may be orders of magnitude higher than at ambient conditions. Surprisingly however, wear rate was found to decrease dramatically at temperatures above 100°C, possibly due to evaporation of dissolved moisture.
2013-05-10
Article
Advanced insulation packages, solar reflective film, and other thermal-management technologies enable heavy vehicles to reduce idle climate control loads, as demonstrated by NREL's CoolCab project in collaboration with industry OEMs and suppliers.
Viewing 1 to 15 of 15

    Filter

    • Range:
      to:
    • Year: