Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

2014-04-01
2014-01-1188
Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed.
Journal Article

Effects of External EGR Loop on Cycle-to-Cycle Dynamics of Dilute SI Combustion

2014-04-01
2014-01-1236
Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability-including significant numbers of misfires-that becomes significant with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles.
Journal Article

Reactivity Controlled Compression Ignition Drive Cycle Emissions and Fuel Economy Estimations Using Vehicle Systems Simulations with E30 and ULSD

2014-04-01
2014-01-1324
In-cylinder blending of gasoline and diesel to achieve reactivity controlled compression ignition (RCCI) has been shown to reduce NOX and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. However, the current range of the experimental RCCI engine map investigated here does not allow for RCCI operation over the entirety of some drive cycles and may require a multi-mode strategy where the engine switches from RCCI to CDC when speed and load fall outside of the RCCI range.
Journal Article

Gasoline-Like Fuel Effects on High-Load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy

2014-04-01
2014-01-1271
In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm.
Journal Article

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

2014-04-01
2014-01-1231
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with λ=1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at λ=1 (with 15% EGR, 18.5 bar with 0% EGR).
Technical Paper

Effectiveness Stabilization and Plugging in EGR Cooler Fouling

2014-04-01
2014-01-0640
Fouling in EGR coolers occurs because of the presence of soot and condensable species (such as hydrocarbons) in the gas stream. Fouling leads to one of two possible outcomes: stabilization of effectiveness and plugging of the gas passages within the cooler. Deposit formation in the cooler under high-temperature conditions results in a fractal deposit that has a characteristic thermal conductivity of ∼0.033 W/m*K and a density of 0.0224 g/cm3. Effectiveness becomes much less sensitive to changes in thermal resistance as fouling proceeds, creating the appearance of “stabilization” even in the presence of ongoing, albeit slow, deposit growth. Plugging occurs when the deposit thermal resistance is several times lower because of the presence of large amounts of condensed species. The deposition mechanism in this case appears to be soot deposition into a liquid film, which results in increased packing efficiency and decreased void space in the deposit relative to high-temperature deposits.
Technical Paper

Analysis of Lacquer Deposits and Plugging Found in Field-Tested EGR Coolers

2014-04-01
2014-01-0629
All high-pressure exhaust gas recirculation (EGR) coolers become fouled during operation due to thermophoresis of particulate matter and condensation of hydrocarbons present in diesel exhaust. In some EGR coolers, fouling is so severe that deposits form plugs strong enough to occlude the gas passages thereby causing a complete failure of the EGR system. In order to better understand plugging and means of reducing its undesirable performance degradation, EGR coolers exhibiting plugging were requested from and provided by industry EGR engineers. Two of these coolers contained glassy, brittle, lacquer-like deposits which were analyzed using gas chromatography-mass spectrometry (GC-MS) which identified large amounts of oxygenated polycyclic aromatic hydrocarbons (PAHs). Another cooler exhibited similar species to the lacquer but at a lower concentration with more soot.
Technical Paper

Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits

2014-04-01
2014-01-0628
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. Exhaust gas laden with particulate matter flows through the EGR cooler which causes deposits to form through thermophoresis and condensation. The low thermal conductivity of the resulting deposit reduces the effectiveness of the EGR system. In order to better understand this phenomenon, industry-provided coolers were characterized using neutron tomography. Neutrons are strongly attenuated by hydrogen but only weakly by metals which allows for non-destructive imaging of the deposit through the metal heat exchanger. Multiple 2-D projections of cooler sections were acquired by rotating the sample around the axis of symmetry with the spatial resolution of each image equal to ∼70 μm. A 3-D tomographic set was then reconstructed, from which slices through the cooler sections were extracted across different planes.
X