Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Consequences of Deep Cycling 24 Volt Battery Strings

2015-07-01
2015-01-9142
Deep charge and discharge cycling of 24 Volt battery strings composed of two 12 Volt VRLA batteries wired in series affects reliability and life expectancy. This is a matter of interest in vehicle power source applications. These cycles include those specific operational cases requiring the delivery of the full storage capacity during discharge. The concern here is related to applications where batteries serve as a primary power source and the energy content is an issue. It is a common practice for deep cycling a 24 volt battery string to simply add the specified limit voltages during charge and discharge for the individual 12 Volt batteries. In reality, the 12 Volt batteries have an inherent capacity variability and are not identical in their performance characteristics. The actual voltages of the individual 12 Volt batteries are not identical.
Journal Article

An Experimental Survey of Li-Ion Battery Charging Methods

2016-05-01
2015-01-9145
Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
Technical Paper

Radial-Ply vs. Bias-Ply Tires' Transmissibility

2007-04-16
2007-01-1513
Full nonlinear finite element radial-ply and bias-ply tire models are developed to investigate different structured tires' transmissibility phenomena. The reaction forces of the tire axles in time domain are recorded first when the tires encounter a bump (cleat), and then the FFT algorithm is applied to examine the dynamic response information in frequency domain. The results of the radial-ply vs. bias-ply tires' transmissibility are validated against previous studies and show reasonable agreement.
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

Correlation of Axle Build Parameters to End-of-Line NVH Test Performance Part II: Multivariate Regression Analysis

2012-04-16
2012-01-0728
The second part of a detailed examination of multivariate correlation of several axle assembly and component parameters to the assembly NVH performance (vibration) measured at the end of the assembly process is presented focusing on the multivariate linear regression analysis. The study is based on test results and measurements acquired from multiple axle assemblies built with the same hypoid gearset, thus effectively eliminating the affect of gearset variation on the test result. Several major components within the axle are considered including the differential housing (that controls wheel differentiation during turns), the axle housing, and several assembly parameters. Details of the multivariate regression include formulation of the linear regression model, model refinements through analysis of subsets of the variables, tests of significance and residual analysis.
Technical Paper

Correlation of Axle Build Parameters to End-of-Line NVH Test Performance Part I: Preparing the Data for Multivariate Regression Analysis

2012-04-16
2012-01-0727
The first part of a detailed examination of multivariate correlation of several axle assembly and component parameters to the assembly NVH performance (vibration) measured at the end of the assembly process is presented focusing on preparing the data for multivariate regression analysis. The study is based on test results and measurements acquired from multiple axle assemblies built with the same hypoid gearset, thus effectively eliminating the affect of gearset variation on the test result. Several major components within the axle are considered including the differential housing (that controls wheel differentiation during turns), the axle housing, and several assembly parameters.
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Technical Paper

A Radial-Ply Tire's Three-Dimensional Transmissibility Analysis

2006-04-03
2006-01-0498
A nonlinear finite element passenger car radial-ply tire model was developed to investigate a tire's three-dimensional transmissibility in the X, Y, and Z directions. The reaction forces of the tire axle in longitudinal (X axis), lateral (Y axis), and vertical (Z axis) directions were recorded when the tire encountered a cleat, and then the FFT (Fast Fourier Transform) algorithm was applied to extract tire's transient response information in the frequency domain. The result showed that this passenger car tire has clear peaks at 47-51 and 91-92 Hz longitudinal, 41-45 Hz lateral, and 80-83Hz vertical. An analytical rigid ring model was also formulated, based on the dynamic equations of the rigid ring tire model. The characteristic equations were obtained and solved for eigenvalues and eigenvectors, which represent tire's free vibration natural frequencies and mode shapes.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
Technical Paper

Design Approach for Online Measuring the Distance of the Gap between the Contactors of Electric Relay Switch

2014-04-01
2014-01-0831
The assembling accuracy of two contactors during the relay switch production is an important factor affecting the quality of relay. An embedded machine vision quality Inspection system has been developed for electric relay production line inspection. The proposed system can provide online feedback on the quality of the relays by measuring the distance of the gap between the contacts of them. Two CMOS imaging sensors are operated for image acquisition and the parallel working mode is realized under dual-channel mode. A red light illumination system has been adopted to eliminate the imaging noise from the reflection of the surfaces of copper sheet. Before the test, the features areas in the image of same type relay is selected as template and saved in the computer. During the inspection procedure, a rotation invariance detection scheme based on circular projection matching algorithm has been used for fast recognizing and locating detected object with the help of these feature areas.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Journal Article

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

2020-04-14
2020-01-1236
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph.
Technical Paper

EV Battery Charger Impacts on Power Distribution Transformers Due to Harmonics

2022-03-29
2022-01-0750
Increasing the demand for EV charging has increased the burden and accretion of the power quality issues. Harmonic voltages and currents have a significant negative influence on power system components, specifically power transformers. The voltage and current harmonics created by EV chargers and their impacts on power transformers have been discussed in this paper, and an approach is proposed to reduce such harmonics in the system. For this purpose, firstly, the total harmonic distortion (THD) of a typical EV charger is evaluated. Then an analysis is performed utilizing Fast Fourier Transform (FTT) to extract individual harmonics. To this end, this paper addresses the power quality issues on the power transformers by implementing a passive filter. The harmonic voltages and currents were measured on different levels of charging loads. The simulation results show that more than 30% of total harmonic distortions were reduced to 1.16% using a passive filter.
Technical Paper

Fault Diagnosis and Prediction in Automotive Systems with Real-Time Data Using Machine Learning

2022-03-29
2022-01-0217
In the automotive industry, a Malfunction Indicator Light (MIL) is commonly employed to signify a failure or error in a vehicle system. To identify the root cause that has triggered a particular fault, a technician or engineer will typically run diagnostic tests and analyses. This type of analysis can take a significant amount of time and resources at the cost of customer satisfaction and perceived quality. Predicting an impending error allows for preventative measures or actions which might mitigate the effects of the error. Modern vehicles generate data in the form of sensor readings accessible through the vehicle’s Controller Area Network (CAN). Such data is generally too extensive to aid in analysis and decision making unless machine learning-based methods are used. This paper proposes a method utilizing a recurrent neural network (RNN) to predict an impending fault before it occurs through the use of CAN data.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
X