Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Continuously Regenerable Freeze-Out CO2 Control Technology

2007-07-09
2007-01-3270
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA's planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber for an ejector-based cryogenic PLSS was developed, designed, and tested. The scrubber freezes CO2 and other trace contaminants out of expired ventilation loop gas using cooling available from a liquid oxygen (LOX) based PLSS.
Technical Paper

Overview of the Vehicle Cabin Atmosphere Monitor, a Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and CEV

2007-07-09
2007-01-3150
Work is underway to deliver an instrument for analysis of the atmosphere aboard the International Space Station. The Vehicle Cabin Atmosphere Monitor (VCAM) is based on a low-mass, low-power miniature preconcentrator gas chromatograph/mass spectrometer (PCGC/MS) capable of providing sub-ppm measurements of volatile constituents in a space vehicle or outpost. VCAM is designed to operate autonomously, maintenance-free, once per day, with its own carrier and calibration gas supplies sufficient for a one-year lifetime. VCAM performance is sufficient to detect and identify 90% of the target compounds specified at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. The flight units will be delivered in mid-2008 and be operated in the ISS EXPRESS rack.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Ultra High Efficiency and Reliability in New Generation Pump

2007-07-09
2007-01-3129
Piezoelectric pumps offer great potential as an alternative electro-mechanical actuator and as a hydraulic power source. As an actuator, this pump may provide solutions to control system problems in robotics, process control, bioengineering, advanced remote control (telepresence), and automation. As a hydraulic power source they may be useful for active thermal cooling, fluid management, and metering pumps in life support applications. The benefits of piezoelectric based pumps and actuators include increased efficiency, self-cooling, lightweight, compact size, high mechanical reliability, positive displacement, self-priming, no lubrication, no vibration, and rotational inertia. Oceaneering Space Systems (OSS) has produced two successful piezoelectric pump prototypes. The first one is a double-acting diaphragm pump driven by piezoelectric PolyVinylidine DiFluoride (PVDF) polymer. The second prototype is a Lead Zirconate Titanate (PZT) thermoplastic laminated pump.
Technical Paper

Commercializing EVA Services

1998-07-13
981628
This paper summarizes the results of two studies performed in 1995 [1] and 1996 [2] which lay out the case for commercializing services performed in space by Extra Vehicular Activity (EVA). EVA services include all work done external to pressurized volumes, whether directly by humans or remotely by machines. The studies draw heavily on the experience of the subsea service industry because the environments, work, and equipment have many, relevant similarities. It examines several historical parallels which serve as models of how a government activity has been successfully commercialized, examines the markets and cost structure of EVA operations to verify the potential profitability of such an endeavor, and lays out a plan for the transition to commercial services.
Technical Paper

Terrestrial EVA Suit = FireFighter's Protective Clothing

1999-07-12
1999-01-1964
Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.
X