Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improvements in the Distributed Heterogeneous Simulation of Aircraft Electric Power Systems

2006-11-07
2006-01-3044
Two recent enhancements to Distributed Heterogeneous Simulation (DHS) are variable communication rates and higher-order predictors. Variable communication automatically controls the communication interval between any two subsystems in an attempt to achieve a desired accuracy during transient periods and maximize speed during steady-state periods. Higher-order predictors can better estimate the values of exchanged variables between data exchange instances, which can improve accuracy and possibly require fewer exchanges. A comparison between a single-computer simulation of an aircraft electric power system and an equivalent three-computer DHS show that the variable communication technique enables more accuracy and higher speed distributed simulations than fixed-step communication. In addition, higher-order predictors are shown to increase accuracy in some cases.
Journal Article

Modeling, Analysis, and Control Design for an Intermittent Megawatt Generator

2008-11-11
2008-01-2858
An Intermittent Megawatt Generator (IMG) has been designed by Innovative Power Solutions (IPS) to meet the needs of future directed energy loads on high-performance aircraft. These loads significantly impact the electrical, mechanical, and thermal performance of the generator, load, and aircraft. If representative simulation models of the generator and other important subsystems can be obtained, the impact on system performance can be analyzed and optimized before the generator is deployed. The objective of this work was to utilize various modeling techniques to obtain accurate electrical, thermal, and mechanical performance models of the IMG, and to apply these models to analyze dynamic response transients to sudden load changes as seen for directed energy loads. Additionally, the models have been used to optimize the IMG control to mitigate voltage transients during these load changes.
X