Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Modular Power System Architecture for Military and Commercial Electric Vehicles

2010-11-02
2010-01-1756
Numerous modern military and commercial vehicles rely on portable, battery-powered sources for electric energy. Due to their highly specialized functions these vehicles are typically custom-designed, produced in limited numbers, and expensive. To mitigate the power system's contribution to these undesirable characteristics, this paper proposes a modular power system architecture consisting of “smart” power battery units (SPUs) that can be readily interconnected in numerous ways to provide distributed and coordinated system power management. The proposed SPUs contain a battery power source and a power electronics converter. They are compatible with multiple battery chemistries (or any energy storage device that can produce a terminal voltage), allowing them to be used with both existing and future energy storage technologies.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

Power Thermal Management System Design for Enhanced Performance in an Aircraft Vehicle

2010-11-02
2010-01-1805
The thermal management of modern aircraft has become more challenging as aircraft capabilities have increased. The use of thermally resistant composite skins and the desire for low observability, reduced ram inlet size and number, have reduced the ability to transfer heat generated by the aircraft to the environment. As the ability to remove heat from modern aircraft has decreased, the heat loads associated with the aircraft have increased. Early in the aircraft design cycle uncertainty exists in both aircraft requirements and simulation predictions. In order to mitigate the uncertainty, it is advantageous to design thermal management systems that are insensitive to design cycle uncertainty. The risk associated with design uncertainty can be reduced through robust optimization. In the robust optimization of the thermal management system, three noise factors were selected: 1) engine fan air temperature, 2) avionics thermal load, and 3) engine thrust.
Technical Paper

Integrated Aircraft Electrical Power System Modeling and Simulation Analysis

2010-11-02
2010-01-1804
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the electrical systems. An electrical system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. An integratated model of segment level models of an electrical system including a generator, electrical accumulator unit, electrical distribution unit and electromechanical actuators has been developed. Included in the model are mission level models of an engine and aircraft to provide relevant boundary conditions. It is anticipated that the tracking of the electrical distribution through numerical integration of these various subsystems will lead to more accurate predictions of the bus power quality. In this paper the tool is used to evaluate two architectures using two different load profiles.
Technical Paper

Hardware-in-the-Loop Electric Drive Stand Issues for Jet Engine Simulation

2010-11-02
2010-01-1810
Next generation aircraft will require more electrical power, more thermal cooling, and better versatility. To attain these improvements, technologies will need to be integrated and optimized at a system-level. The complexity of these integrated systems will require considerable analysis. In order to characterize and understand the implications of highly-integrated aircraft systems, the effects of pulsed-power, highly-transient loads, and the technologies that drive system-stability and behavior, an approach will be taken utilizing integrated modeling and simulation with hardware-in-the-loop (HIL). Such experiments can save time and cost and increase the general understanding of electrical and thermal phenomena as it pertains to aircraft systems before completing an integrated ground demonstration. As a first step toward completing an integrated analysis, a dynamometer “drive stand” was characterized to assess its performance.
Technical Paper

Experimental Characterization of Brushless Synchronous Machines for Efficient Model-Base System Engineering

2016-09-20
2016-01-2027
Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
Technical Paper

Enhancements to Software Tools and Progress in Model-Based Design of EOA on the INVENT Program

2014-09-16
2014-01-2118
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems across multiple disciplines. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several MBD-derived software tools, including models of EOA technologies, have been developed. To validate these models and demonstrate the performance of EOA technologies, a series of Integrated Ground Demonstration (IGD) hardware tests are planned. Several of the numerous EOA software tools and MBD-based processes have been updated and adapted to support this activity.
X