Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 14 of 14
2013-09-08
Journal Article
2013-24-0012
Mirko Baratta, Roberto Finesso, Hamed Kheshtinejad, Daniela Misul, Ezio Spessa, Yixin Yang, Massimo Arcidiacono
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
2013-09-08
Technical Paper
2013-24-0081
Federico Millo, Rocco Fuso, Luciano Rolando, Jianning Zhao, Andrea Benedetto, Filippo Cappadona, Paolo Seglie
Nowadays the increasing demand for sustainable mobility has fostered the introduction of innovative propulsion systems also in the public transport sector in order to achieve a significant reduction of pollutant emissions in highly congested urban areas. Within this context this paper describes the development of the HYBUS, an environmental friendly hybrid bus for on-road urban transportation, which was jointly carried out by Pininfarina and Politecnico di Torino in the framework of the AMPERE project. The first prototype of the bus was built by integrating an innovative hybrid propulsion system featuring a plug-in series architecture into the chassis of an old IVECO 490 TURBOCITY. The bus is 12 meters long and has a capacity of up to 116 passengers in the original layout. The project relied on a modular approach where the powertrain could be easily customized for size and power depending on the specific application.
2011-11-08
Technical Paper
2011-32-0610
P. Nuccio, M. Bertone
The aim of this work was to obtain a reduction in pollutant emissions, in particular for NOx and Soot, in an “Off-Road” DI Diesel Engine, equipped with a common rail injection system, by means of exhaust gas recirculation (EGR). First, an engine simulation was performed using a one-dimensional code, and the model was then calibrated with experimental results obtained from a previous research work conducted on bench tests. Thanks to the engine model, specific emissions were then determined in all conditions, that is, in “eight modes” pertaining to engine loads and speeds. Both the injection advance and EGR amount were changed for all of these conditions in order to obtain the best compromise between fuel consumption and emissions and to respect standard regulations. The investigation was performed using both the Wiebe and a more complex combustion models; this latter allows in fact to determine the soot emission through the Nagle-Strickland model.
2012-09-24
Technical Paper
2012-01-2040
Gabriele Altare, Damiano Padovani, Nicola Nervegna
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
2015-09-06
Journal Article
2015-24-2389
Mirko Baratta, Roberto Finesso, Daniela Misul, Ezio Spessa
Abstract The potential of internal EGR (iEGR) and external EGR (eEGR) in reducing the engine-out NOx emissions in a heavy-duty diesel engine has been investigated by means of a refined 1D fluid-dynamic engine model developed in the GT-Power environment. The engine is equipped with Variable Valve Actuation (VVA) and Variable Geometry Turbocharger (VGT) systems. The activity was carried out in the frame of the CORE Collaborative Project of the European Community, VII FP. The engine model integrates an innovative 0D predictive combustion algorithm for the simulation of the HRR (heat release rate) based on the accumulated fuel mass approach and a multi-zone thermodynamic model for the simulation of the in-cylinder temperatures. NOx emissions are calculated by means of the Zeldovich thermal and prompt mechanisms.
2008-04-01
Book
Federico Millo, Magdi K. Khair
Diesel engines continue to be widely used in heavy-duty commercial applications around the world, and they are also gaining popularity in light-duty applications such as passenger cars. With this comes increased concern for and regulation of diesel emissions - most notably particulate matter (PM) and nitric oxide (NOx) emissions. As the restrictions grow tighter, exhaust aftertreatment technologies must become more efficient and reliable. The 55 SAE technical papers in this compilation will guide engineers in their efforts to meet these new regulations, by summarizing the latest diesel exhaust aftertreatment technology for both light- and heavy-duty applications.
2013-07-18
Article
Researchers address some aspects regarding the modeling of a hydraulic circuit of a commercial excavator.
2013-05-15
Journal Article
2013-01-9016
Massimo Rundo, Raffaele Squarcini
Aim of this work is the development of a lumped parameters simulation model of single-vane vacuum pumps for pneumatically actuated brake boosters. Kinematic and fluid-dynamic models are integrated in a simulation environment to create a tool aimed at evaluating the vacuum pump performance and at guiding the designer during the prototype development. The paper describes extensively the mathematical model, the time domain simulation and experimental analyses performed on a camshaft mounted unit. Great emphasis is placed on the evaluation of the geometric quantities of the control volumes into which the vacuum pump has been divided. For each control volume the mass and energy conservation equations lead to the determination of the instantaneous pressure. The volume of each variable chamber and the respective angular derivative are calculated as function of the shaft position starting from the stator track profile supplied as a generic closed polyline.
2008-10-07
Journal Article
2008-01-2643
G. Villata, A. Tarabocchia, V. Bozzolini, J. Caroca, N. Russo, D. Fino, G. Saracco, V. Specchia
La1-xAxNi1-yByO3 nanostructured perovskite-type oxides catalysts (where A = Na, K, Rb and B = Cu; x = 0, 0.2 and y = 0, 0.05, 0.1), also supporting 2% in weight of gold, were prepared via the so-called “Solution Combustion Synthesis (SCS)” method, and characterized by means of XRD, BET, FESEM-EDS and TEM analyses. The performance of these catalysts towards the simultaneous oxidation of soot and CO was evaluated. The 2 wt.% Au-La0.8K0.2Ni0.9Cu0.1O3 showed the best performance with a peak carbon combustion temperature of 367 °C and the half conversion of CO reached at 141 °C. The same nanostructured catalyst, deposited by in situ SCS directly over a SiC filter and tested on real diesel exhaust gases, fully confirmed the encouraging results obtained on the powder catalyst.
2007-10-30
Technical Paper
2007-01-4173
A. Renzullo, A. Tarabocchia, G. Villata, D. Mescia, J. C. Caroca, A. Raimondi, N. Russo, D. Fino, G. Saracco, V. Specchia
Nano-structured perovskite-type oxides catalysts La1-xAxFe1-yByO3 (where A = Na, K, Rb and B = Cu), prepared by the Solution Combustion Synthesis (SCS) method and characterized by BET, XRD, FESEM, AAS and catalytic activity tests in microreactors and engine bench, proved to be effective in the simultaneous removal of soot and NO, the two prevalent pollutants in diesel exhaust gases in the temperature range 350-450°C. The best compromise between soot and nitrogen oxide abatement was shown by La-K-Cu-FeO3 catalyst which displayed the highest catalytic activity towards carbon combustion and the highest NO conversion activity.
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
Abstract To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
2018-01-12
Journal Article
2018-01-9275
Hamed Kheshtinejad, Mirko Baratta, Danilo Laurenzano, Claudio Maino, Daniela Anna Misul
CNG is at present retaining a growing interest as a factual alternative to traditional fuels for SI engines, thanks to its high potentials in reducing the engine-out emissions. Increasing thrust into the exploitation of NG in the transport field is in fact produced by the even more stringent emission regulations that are being introduced into the worldwide scenario. The present paper aims at deeply investigating into the potentials of a heavy-duty engine running on CNG and equipped with two different injection systems, an advanced single point (SP) one and a prototype multi-point (MP) one. The considered 7.8-liter engine was designed and produced to implement a SP strategy and hence modified to run with a dedicated MP system. A thorough comparison of the engine equipped with the two injection systems has been carried out at steady state as well as at transient operations.
2017-09-04
Journal Article
2017-24-0057
Roberto Finesso, Omar Marello, Ezio Spessa, Yixin Yang, Gilles Hardy
Abstract A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
2017-03-28
Journal Article
2017-01-0695
Ezio Spessa, Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Roberto Vitolo, Gilles Hardy
Abstract In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
Viewing 1 to 14 of 14

    Filter

    • Range:
      to:
    • Year: