Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

Optimal Design of Cellular Material Systems for Crashworthiness

2016-04-05
2016-01-1396
This work proposes a new method to design crashworthiness structures that made of functionally graded cellular (porous) material. The proposed method consists of three stages: The first stage is to generate a conceptual design using a topology optimization algorithm so that a variable density is distributed within the structure minimizing its compliance. The second stage is to cluster the variable density using a machine-learning algorithm to reduce the dimension of the design space. The third stage is to maximize structural crashworthiness indicators (e.g., internal energy absorption) and minimize mass using a metamodel-based multi-objective genetic algorithm. The final structure is synthesized by optimally selecting cellular material phases from a predefined material library. In this work, the Hashin-Shtrikman bounds are derived for the two-phase cellular material, and the structure performances are compared to the optimized structures derived by our proposed framework.
Technical Paper

Surrogate-Based Global Optimization of Composite Material Parts under Dynamic Loading

2018-04-03
2018-01-1023
This work presents the implementation of the Efficient Global Optimization (EGO) approach for the design of composite materials under dynamic loading conditions. The optimization algorithm is based on design and analysis of computer experiments (DACE) in which smart sampling and continuous metamodel enhancement drive the design towards a global optimum. An expected improvement function is maximized during each iteration to locate the designs that update the metamodel until convergence. The algorithm solves single and multi-objective optimization problems. In the first case, the penetration of an armor plate is minimized by finding the optimal fiber orientations. Multi-objective formulation is used to minimize the intrusion and impact acceleration of a composite tube. The design variables include the fiber orientations and the size of zones that control the tube collapse.
Journal Article

Nonlinear Multi-Fidelity Bayesian Optimization: An Application in the Design of Blast Mitigating Structures

2022-03-29
2022-01-0790
A common scenario in engineering design is the availability of several black-box functions that describe an event with different levels of accuracy and evaluation cost. Solely employing the highest fidelity, often the most expensive, black-box function leads to lengthy and costly design cycles. Multi-fidelity modeling improves the efficiency of the design cycle by combining information from a small set of observations of the high-fidelity function and large sets of observations of the low-fidelity, fast-to-evaluate functions. In the context of Bayesian optimization, the most popular multi-fidelity model is the auto-regressive (AR) model, also known as the co-kriging surrogate. The main building block of the AR model is a weighted sum of two Gaussian processes (GPs). Therefore, the AR model is well suited to exploit information generated by sources that present strong linear correlations.
Technical Paper

Multi-Objective Bayesian Optimization of Lithium-Ion Battery Cells

2022-03-29
2022-01-0703
In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. A LIB is composed of several unit cells. Therefore, one of the most important factors that determine the performance of a LIB are the characteristics of the unit cell. The design of LIB cells is a challenging problem since it involves the evaluation of expensive black-box functions. These functions lack a closed-form expression and require long-running time simulations or expensive physical experiments for their evaluation. Recently, Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition function that guides the optimization.
Technical Paper

Efficient Design of Automotive Structural Components via De-Homogenization

2023-04-11
2023-01-0026
In the past decades, automotive structure design has sought to minimize its mass while maintaining or improving structural performance. As such, topology optimization (TO) has become an increasingly popular tool during the conceptual design stage. While the designs produced by TO methods provide significant performance-to-mass ratio improvements, they require considerable computational resources when solving large-scale problems. An alternative for large-scale problems is to decompose the design domain into multiple scales that are coupled with homogenization. The problem can then be solved with hierarchical multiscale topology optimization (MSTO). The resulting optimal, homogenized macroscales are de-homogenized to obtain a high-fidelity, physically-realizable design. Even so MSTO methods are still computationally expensive due to the combined costs of solving nested optimization problems and performing de-homogenization.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

2019-04-02
2019-01-0837
The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates

2015-04-14
2015-01-1369
This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
Technical Paper

Design of a Hybrid Honeycomb Unit Cell with Enhanced In-Plane Mechanical Properties

2019-04-02
2019-01-0710
Sandwich structures with honeycomb core are widely used in the lightweight design and impact energy absorption applications in automotive, sporting, and aerospace industries. Recently, the auxetic honeycombs with negative Poisson's ratio attract substantial attention for different engineering products. In this study, we implement Additive Manufacturing technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior of a novel unit cell for sandwich structure core. The new core model contains the conventional and auxetic honeycomb cells beside each other to create a Hybrid Honeycomb (HHC) for the sandwich structure. The different designs of unit cells with the same volume fraction of 15% are 3D-printed using Fused Deposition Modeling technique, and the comparative study on the mechanical behavior of conventional honeycomb, auxetic honeycomb, and HHC structures is conducted.
Technical Paper

Design for Crashworthiness of Vehicle Structures Using an Extended Hybrid Cellular Automaton Method

2019-04-02
2019-01-0842
This paper introduces a design methodology to tailor the acceleration and displacement responses of a vehicle structure subjected to a dynamic crushing load. The proposed approach is an extension of the hybrid cellular automaton (HCA) method, through which the internal energy density is uniformly distributed within the structure. The proposed approach, referred here to as an extended HCA (xHCA) method, receives the suitable combinations of volume fraction and a finite element meta-parameter for which the algorithm synthesizes the load paths that allow the desired crash response. Lower meta-parameter values lead designs obtained by traditional optimizers, while larger values lead to designs obtained by the HCA method. Simultaneous implementation of multiple values of meta-parameters is presented here as a further development of xHCA method.
Technical Paper

Bayesian Optimization of Active Materials for Lithium-Ion Batteries

2021-04-06
2021-01-0765
The design of better active materials for lithium-ion batteries (LIBs) is crucial to satisfy the increasing demand of high performance batteries for portable electronics and electric vehicles. Currently, the development of new active materials is driven by physical experimentation and the designer’s intuition and expertise. During the development process, the designer interprets the experimental data to decide the next composition of the active material to be tested. After several trial-and-error iterations of data analysis and testing, promising active materials are discovered but after long development times (months or even years) and the evaluation of a large number of experiments. Bayesian global optimization (BGO) is an appealing alternative for the design of active materials for LIBs. BGO is a gradient-free optimization methodology to solve design problems that involve expensive black-box functions. An example of a black-box function is the prediction of the cycle life of LIBs.
Journal Article

Multilevel Design of Sandwich Composite Armors for Blast Mitigation using Bayesian Optimization and Non-Uniform Rational B-Splines

2021-04-06
2021-01-0255
In regions at war, the increasing use of improvised explosive devices (IEDs) is the main threat against military vehicles. Large cabin”s penetrations and high gross accelerations are primary threats against the occupants” survivability. The occupants” survivability under an IED event largely depends on the design of the vehicle armor. Under a blast load, a vehicle armor should maintain its structural integrity while providing low cabin penetrations and low gross accelerations. This investigation employs Bayesian global optimization (BGO) and non-uniform rational B-splines (NURBS) to design sandwich composite armors that simultaneously mitigate the cabin”s penetrations and the reaction force at the armor”s supports. The armors are made of four layers: steel, carbon fiber reinforced polymer (CFRP), aluminum honeycomb, and CFRP.
Journal Article

Implementation of Thermomechanical Multiphysics in a Large-Scale Three-Dimensional Topology Optimization Code

2021-04-06
2021-01-0844
Due to the inherent computational cost of multiphysics topology optimization methods, it is a common practice to implement these methods in two-dimensions. However most real-world multiphysics problems are best optimized in three-dimensions, leading to the necessity for large-scale multiphysics topology optimization codes. To aid in the development of these codes, this paper presents a general thermomechanical topology optimization method and describes how to implement the method into a preexisting large-scale three-dimensional topology optimization code. The weak forms of the Galerkin finite element models are fully derived for mechanical, thermal, and coupled thermomechanical physics models. The objective function for the topology optimization method is defined as the weighted sum of the mechanical and thermal compliance. The corresponding sensitivity coefficients are derived using the direct differentiation method and are verified using the complex-step method.
Technical Paper

Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

2023-04-11
2023-01-0031
A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions.
Technical Paper

Efficient Design of Shell-and-Tube Heat Exchangers Using CAD Automation and Fluid flow Analysis in a Multi-Objective Bayesian Optimization Framework

2024-04-09
2024-01-2456
Shell-and-tube heat exchangers, commonly referred to as radiators, are the most prevalent type of heat exchanger within the automotive industry. A pivotal goal for automotive designers is to increase their thermal effectiveness while mitigating pressure drop effects and minimizing the associated costs of design and operation. Their design is a lengthy and intricate process involving the manual creation and refinement of computer-aided design (CAD) models coupled with iterative multi-physics simulations. Consequently, there is a pressing demand for an integrated tool that can automate these discrete steps, yielding a significant enhancement in overall design efficiency. This work aims to introduce an innovative automation tool to streamline the design process, spanning from CAD model generation to identifying optimal design configurations. The proposed methodology is applied explicitly to the context of shell-and-tube heat exchangers, showcasing the tool's efficacy.
X