Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Technical Paper

Wall Interactions of Hydrogen Flames Compared with Hydrocarbon Flames

2007-04-16
2007-01-1466
This paper provides a comparison of wall heat fluxes and quenching distances as one-dimensional hydrogen and heptane flames impinge head-on onto a wall. It is shown that the quenching distances for stoichiometric H2/air and C7H16/air flames under the specified conditions of this study are about the same, but the wall heat flux for the H2/air flames is approximately a factor of two greater. For lean H2/air mixtures, the quenching distance increases substantially and the wall heat flux decreases. To understand more clearly the interplay of flame speed, temperature, thermal diffusivity, and surface kinetics on the results, studies of H2/O2 flames are also carried out.
Technical Paper

A Wall-Modified Flamelet Model for Diesel Combustion

2004-03-08
2004-01-0103
In this paper, a wall-modified interactive flamelet model is developed for improving the modeling of Diesel combustion. The objective is to include the effects of wall heat loss on the transient flame structure. The essential idea is to compute several flamelets with several representative enthalpy defects which account for wall heat loss. Then, the averaged flamelet profile can be obtained through a linear fit between the flamelets according to the enthalpy defect of the local gas which results from the wall heat loss. The enthalpy defect is estimated as the difference between the enthalpy in a flamelet without wall heat loss, which would correspond to the enthalpy in the gas without wall heat loss, and the gas with wall heat loss. The improved model is applied to model combustion in a Diesel engine. In the application, two flamelets, one without wall heat loss and one with wall heat loss, are considered.
Technical Paper

A Mixture Fraction Averaged Approach to Modeling NO and Soot in Diesel Engines

2001-03-05
2001-01-1005
Multidimensional models are increasingly employed to predict NO and soot emissions from Diesel engines. In the traditional approach, the ensemble-averaged values of variables are employed in the expressions for NO and soot formation and oxidation. In the mixture fraction averaged approach, the values of state variables and species concentrations are obtained from the structure of laminar diffusion flames. The source terms for NO and soot are then obtained by averaging across the mixture fraction coordinate with a probability density function. The clipped-Gaussian probability density function and profiles obtained by employing the OPPDIF code (part of the CHEMKIN package) for the laminar flame structure are employed in this work. The Zeldovich mechanism for NO formation and the Moss et al. formation and Nagle-Strickland-Constable oxidation model for soot have been employed to study the qualitative trends of pollutants in transient combusting Diesel jets.
Technical Paper

An Evaluation of a Composite Model for Predicting Drop-Drop Collision Outcomes in Multidimensional Spray Computations

2002-03-04
2002-01-0943
The standard model for predicting the outcome of drop-drop collisions in sprays is one developed based on measurements in rain drops under atmospheric pressure conditions. This model includes the possible outcomes of grazing collisions and coalescence. Recent measurements with hydrocarbon drops and at higher pressure (up to 12 bar) indicate the possibility of additional outcomes: bounce, reflexive separation and drop shattering. The measurements also indicate that the Weber number range over which bounce occurs is dependent on the gas pressure. The probability of a drop-drop collision resulting in bounce increases with gas pressure. A composite model that includes all these outcomes as possibilities is employed to carry out computations in a constant volume chamber and in a Diesel engine. A sub-model for bounce that includes the pressure effects is also part of the composite model.
Technical Paper

Dependence of Fuel-Air Mixing Characteristics on Injection Timing in an Early-Injection Diesel Engine

2002-03-04
2002-01-0944
In recent years, there has been an interest in early-injection Diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to top-dead-center (TDC) compared to standard Diesel engines. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency. Diesel engines in which a homogeneous mixture is achieved close to TDC are known as Homogenous Charge Compression Ignition (HCCI) engines. PREmixed lean DIesel Combustion (PREDIC) engines in which the start of fuel injection is considerably advanced in comparison with that of the standard Diesel engine is an attempt to achieve a mode of operation close to HCCI. Earlier studies have shown that in a PREDIC engine, the fuel injection timing affects the mixture formation and hence influences combustion and pollutant formation.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

2005-04-11
2005-01-0996
This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

Conditions In Which Vaporizing Fuel Drops Reach A Critical State In A Diesel Engine

1999-03-01
1999-01-0511
It has been shown recently that the maximum penetration of the liquid phase in a vaporizing Diesel spray is relatively short compared to the overall jet penetration and that this maximum is reached in 2 - 4°CA after start of injection. This implies that the drops that are formed by atomization vaporize in a short characteristic time and length relative to other physical processes. This paper addresses an important question related to this observation: Are the vaporizing fuel drops disappearing because they reach a critical state? Related to this question is another: Under what conditions will vaporizing fuel drops reach a critical state in a Diesel engine? Single drops of pure component liquid hydrocarbons and their mixtures vaporizing in quiescent nitrogen or carbon dioxide gas environments with ambient pressures and temperatures at values typically found in Diesel engines are examined.
Technical Paper

Computations of Soot and NO in Lifted Flames under Diesel Conditions

2014-04-01
2014-01-1128
In this work, computations of reacting diesel jets, including soot and NO, are carried out for a wide range of conditions by employing a RANS model in which an unsteady flamelet progress variable (UFPV) sub-model is employed to represent turbulence/chemistry interactions. Soot kinetics is represented using a chemical mechanism that models the growth of soot precursors starting from a single aromatic ring by hydrogen abstraction and carbon (acetylene) addition and NO is modeled using the kinetics from a sub-mechanism of GRI-Mech 3.0. Tracer particles are used to track the residence time of the injected mass in the jet. For the soot and NO computations, this residence time is used to track the progression of the soot and NO reactions in time. The conditions selected reflect changes in injection pressure, chamber temperature, oxygen concentration, and density, and orifice diameter.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
X