Refine Your Search

Topic

Search Results

Technical Paper

Combined CFD and CAA Simulations with Impedance Boundary Conditions

2021-08-31
2021-01-1048
In computational fluid dynamic (CFD) and computational aeroacoustics (CAA) simulations, the wall surface is normally treated as a purely reflective wall. However, some surface treatments are usually applied in experiments. Thus, the acoustic simulations cannot be validated by experimental results. One of the major challenges is how to define acoustically boundary conditions in a well-posed way. In aeroacoustics analysis, impedance is a quantity to characterize reflectivity and absorption of an acoustically treated surface, which may be introduced into the numerical models as a frequency-domain boundary condition. However, CFD and CAA simulations are time-domain computations, meaning the frequency-domain impedance boundary condition cannot be adopted directly. Several methods, including the three-parameter model, the z-transform method and the reflection coefficient model, were developed.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

2001-03-05
2001-01-0042
A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

2001-04-30
2001-01-1462
The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

Optimization of Metalcasting Design

2002-03-04
2002-01-0914
Design optimization for functionality, and manufacturability was virtually impossible in the past. However, recent standardization of file storing formats resulted in seamless data transfer from one software package to another; thus, allowing integration of all facets of product design optimization. This paper describes a metalcasting design optimization process. It focuses on the design of cast parts according to functional requirements while optimizing shape with respect to structural integrity, while ascertaining that the part can be manufactured (cast) without defects.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Technical Paper

Methodology for Metalcasting Process Selection

2003-03-03
2003-01-0431
Today, there are several hundreds of manufacturing processes available to the designer to choose from, and the number is constantly increasing. The ability to choose a manufacturing process for a particular user need set in the early stage of the design process is necessary. In metalcasting alone, there are over forty different processes with different capabilities. A designer can benefit from knowing the manufacturing process alternatives available to him. Inaccurate process selection can lead to financial losses and market share erosion. This paper discusses a methodology for selection of a metalcasting process based on a number of user specified attributes or requirements. A model of user requirements was developed and these requirements were matched with the capabilities of each metalcasting process. The metalcasting process which best meets these needs is suggested.
Technical Paper

Optimal Design of Cellular Material Systems for Crashworthiness

2016-04-05
2016-01-1396
This work proposes a new method to design crashworthiness structures that made of functionally graded cellular (porous) material. The proposed method consists of three stages: The first stage is to generate a conceptual design using a topology optimization algorithm so that a variable density is distributed within the structure minimizing its compliance. The second stage is to cluster the variable density using a machine-learning algorithm to reduce the dimension of the design space. The third stage is to maximize structural crashworthiness indicators (e.g., internal energy absorption) and minimize mass using a metamodel-based multi-objective genetic algorithm. The final structure is synthesized by optimally selecting cellular material phases from a predefined material library. In this work, the Hashin-Shtrikman bounds are derived for the two-phase cellular material, and the structure performances are compared to the optimized structures derived by our proposed framework.
Technical Paper

Development of a Torque-Based Control Strategy for a Mode-Switching Hydraulic Hybrid Passenger Vehicle

2018-04-03
2018-01-1007
An increase in the number of vehicles per capita coupled with stricter emission regulations have made the development of newer and better hybrid vehicle architectures indispensable. Although electric hybrids have more visibility and are now commercially available, hydraulic hybrids, with their higher power densities and cheaper components, have been rigorously explored as the alternative. Several architectures have been proposed and implemented for both on and off highway applications. The most commonly used architecture is the series hybrid, which requires an energy conversion from the primary source (engine) to the secondary domain. From he re, the power flows either into the secondary source (high-pressure accumulator) or to the wheels depending upon the state of charge of the accumulator. A mode-switching hydraulic hybrid, which is a combination of a hydrostatic transmission and a series hybrid, was recently developed in the author’s research group.
Technical Paper

THE EFFECT OF PROPLETS AND BI-BLADES ON THE PERFORMANCE AND NOISE OF PROPELLERS

1981-02-01
810600
A analytical technique for predicting the aerodynamic performance of propellers with tip devices (proplets) using vortex lattice method shows that the ideal efficiency of a fixed diameter propeller can be improved by 1-5%. By suitable orientation and sweep of the proplet, the noise analysis method presented predicts that propellers with tip devices will have approximately the same noise as propellers without tip devices. Therefore proplets can be added to a fixed diameter propeller to improve the efficiency with no increase in noise or the noise may be reduced by decreasing the diameter with no loss in aerodynamic efficiency.
Technical Paper

Efficient Design of Automotive Structural Components via De-Homogenization

2023-04-11
2023-01-0026
In the past decades, automotive structure design has sought to minimize its mass while maintaining or improving structural performance. As such, topology optimization (TO) has become an increasingly popular tool during the conceptual design stage. While the designs produced by TO methods provide significant performance-to-mass ratio improvements, they require considerable computational resources when solving large-scale problems. An alternative for large-scale problems is to decompose the design domain into multiple scales that are coupled with homogenization. The problem can then be solved with hierarchical multiscale topology optimization (MSTO). The resulting optimal, homogenized macroscales are de-homogenized to obtain a high-fidelity, physically-realizable design. Even so MSTO methods are still computationally expensive due to the combined costs of solving nested optimization problems and performing de-homogenization.
Technical Paper

An Efficient Procedure for Visualizing the Sound Field Radiated by Vehicles During Standardized Passby Tests

1999-05-17
1999-01-1741
Spherical beamforming was used to visualize sound radiation during a vehicle passby test. Forward and backward propagation procedures are compared in terms of computational expense. A spherical spreading correction factor is described, along with a maximum liklihood procedure for obtaining an optimal array weighting dependent on the relative distance between the microphones and the focus point. The de-Dopplerized microphone outputs are multiplied by the weighting factors and summed to yield the source strengths over a reconstruction plane “attached” to the vehicle. Results obtained using a 16 element sparse array during an actual passby are used to demonstrate the present approach.
Technical Paper

Modeling and Measurement of Occupied Car Seats

1999-05-17
1999-01-1690
An overview of model development for seated occupants is presented. Two approaches have been investigated for modeling the vertical response of a seated dummy: finite element and simplified mass-spring-damper methods. The construction and implementation of these models are described, and the various successes and drawbacks of each modeling approach are discussed. To evaluate the performance of the models, emphasis was also placed on producing accurate, repeatable measurements of the static and dynamic characteristics of a seated dummy.
Technical Paper

A Parametric Simulation Model for Analyzing the Performance of a Steel-Tracked Feller Buncher

1999-09-13
1999-01-2785
A parametric simulation model of a steel-tracked feller buncher was developed1. This model can be used to predict the lift capacity, side tipping angles, grade-ability, and joint forces during a cutting cycle. The feller buncher is defined parametrically, allowing the user to quickly analyze different machine configurations simply by changing the value of a variable. Several simulations were performed to illustrate the application of the model.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

2019-04-02
2019-01-0837
The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
X