Refine Your Search

Topic

Search Results

Technical Paper

Real-Time Measurement of Camshaft Wear in an Automotive Engine - a Radiometric Method

1990-10-01
902085
A radiometric method has been developed for the determination of camshaft wear during engine operation. After a radioactive tracer is induced at the tips of one or more cam lobes by the technique of surface layer activation, calibration procedure are performed to determine the amount of radioactive material remaining versus the depth worn. The decrease in γ-ray intensity measured external to the engine is then directly related to cam lobe wear. By incorporating a high-resolution detector and an internal radioactive standard,measurement accuracy better than ±0.2 μm at 95% confidence has been achieved. Without the requirement of engine disassembly, this method has provided unique measurements of break-in wear and wear as a function of operating conditions. Because this approach requires only low levels of radiation, it has significant potential applications in wear control.
Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

Correlation of Physical Properties with Performance of Polyacrylate Radial Lip Seals at -30F

1973-02-01
730051
This paper evaluates the tendency of lip seals to fracture in a test apparatus in which dynamic runout is 0.010 in and the temperature is cycled between -30 and 0 F. Seals made of eight different polyacrylate polymers were soap-sulfur cured with various types and amounts of carbon black. Physical tests included room-temperature flexibility defined by Young's modulus at small strains, standard tensile tests at room temperature, flexibility at sub-zero temperatures determined by a Gehman test, and sub-zero starting torques of the seals. Primary determinant of successful fracture resistance is a low starting torque resulting from good low-temperature flexibility. The effect of adding graphite to some of these formulations is described and some current commercially available seals are evaluated.
Technical Paper

Mechanical Simulation of Human Thorax Under Impact

1973-02-01
730982
This paper summarizes an analysis, design, and test project in which a dummy chest structure was developed. The chest consisted of mechanical elements that had been characterized by computer simulations as giving responses to blunt frontal impacts necessary for biofidelity. An analysis of mechanical rib structures indicated that materials having a high ratio of yield stress to modulus of elasticity were required. Only metals having unusually high yield strengths, such as spring steels, qualified. A mechanical system was developed with steel ribs pivoted at each end as a primary spring. A secondary spring was a pair of commercially available die springs acting in parallel with the ribs after 25.4 mm (1.00 in) deflection. A fluid damper was developed to provide the damping. The chest structure was tested under conditions modified from those used by Kroell. The modifications were holding the spine rigidly and reducing the impact masses.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
Technical Paper

Vehicle Evaluation of Synthetic and Conventional Engine Oils

1975-02-01
750827
A five-vehicle, 64 000-km test with 7.45 litre V-8 engines was conducted to determine if synthetic engine oils provided performance sufficiently superior to that of conventional engine oils to permit longer oil change intervals. The results show better performance in two areas of deposit control; inferior performance with respect to wear protection; and essentially equivalent performance in the areas of fuel and oil economies. Based on these data, it was concluded that synthetic engine oils do not provide the necessary performance required to safely recommend their use for extended oil change intervals. In addition, a cost analysis shows that the use of synthetic engine oils, even at a change interval of 32 000 km, will essentially double the customers' cost compared with conventional engine oils at GM's current 12 000-km change interval.
Technical Paper

Development of Polymeric Materials for Humanlike Neck Simulations

1974-02-01
740993
Several polymeric materials were developed and evaluated for possible inclusion in the neck structure of state-of-the-art anthropomorphic dummies. These included three types of foam-polyvinylchloride, polyethylene, and polyurethane, and two flexible polymers-polyurethane and a polyvinylchloride chlorinated polyethylene blend (PVC-CPE). Two materials, the polyurethane elastomer and the PVC-CPE blend, were found to be satisfactory in their dynamic response. Because of the ease of casting, the polyurethane material will be used in the GMR 1 state-of-the-art dummy.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Transmission Air Breathing Suppressor (TABS) Valve - A Device for Improving Automatic Transmission Fluid Life

1974-02-01
740055
Automatic transmission fluids can oxidize with use, causing marginal transmission performance and eventual transmission malfunction. Periodic fluid changes are presently recommended to alleviate this problem. Fluid oxidation is promoted in current transmissions because they breathe air freely through a vent tube. To reduce fluid oxidation, and thereby improve fluid and transmission durability, a one-way check valve, called the Transmission Air Breathing Suppressor (TABS), was designed to restrict the intake of air into the transmission and to replace the conventional vent tube. The effectiveness of the TABS valve in reducing fluid oxidation was determined in high temperature transmission cycling tests and in taxicab tests. Fluid oxidation results with the TABS valve-equipped transmissions were compared to those with normally-vented transmissions. By reducing the amount of oxygen in the transmission gas, the TABS valve nearly eliminated fluid oxidation.
Technical Paper

A Modal Synthesis Technique for Determining Dynamic Properties for a Structure for Mass and Stiffness Changes

1974-02-01
740329
The assembly and particularly the reduction of the mass and stiffness matrix for a large system can be a significant portion of the computational cost of finding the mode shapes and natural frequencies. Therefore, parameter studies for design purposes can be prohibitive if these matrices are reassembled and reduced for each change. The purpose of this paper is to outline the procedure for using the modes of the original system to determine the dynamic characteristics of the changed system. The method also results in computational savings for boundary condition changes and for large systems that are nearly-symmetric except for a few mass and stiffness changes. To illustrate the method several changes are made to a ladder frame. The results from an analysis using the reconstructed mass and stiffness matrices and the modal synthesis technique are compared to show the accuracy and freedom requirements.
Technical Paper

The Computation of Tearing Energy of Nicked Rubber Strips in Extension

1974-02-01
740325
To compute the tearing energy of nicked rubber strips in extension, one has to solve first the associated stress-deformation involving finite elasticity. In the past, this was a formidable task so that the tearing energy had been determined solely by experiments and only for a few testpieces. With the aid of the finite element method (FEM), it is shown that this may now be done simply through the use of the Rice's J integral. Tearing energy for two testpieces are computed and results compared with existing experimental data. The agreement is good. Because of FEM's ability to treat general geometric and loading conditions, the use of the J integral in combination with FEM to cmpute the tearing energy now allows a wider application of the tearing energy concept to more complex units than hitherto known.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Rotating Shaft Seal Elastomers

1966-02-01
660396
The Total Immersion Test (ASTM D 471) for seal elastomers, used in evaluating the compatibility of fluids and seals for automatic transmissions, does not, produce hardness and volume change results similar to those found for rotating shaft seals in service. The Tip Cycle Test was devised to provide better agreement with service results. In the test, one side of the seal is exposed to air, and the other alternately to fluid and to air-fluid vapor. Rotating shaft seals were evaluated in both car and dynamometer transmission tests, and in various bench tests. Agreement was poor between transmission tests and both the Total Immersion and the Dip Cycle Tests. Good agreement was found with the Tip Cycle Test.
Technical Paper

A Study of the Effects of Automotive Fluids on Elastomer Seal Materials Using Immersion Tests*

1966-02-01
660395
Effective performance of functional automotive components requires fluid sealing under compatible conditions. One method of determining this compatibility is through the use of immersion testing under a variety of conditions that simulate those experienced in actual use. By measuring the changes in the physical properties of the seal materials after immersion a judgment can be made regarding seal/fluid compatibility which will be encountered later in actual use. A series of immersion tests using representative seal materials and automotive fluids; namely, gear oils, transmission fluids, and motor oils were conducted within the framework of the Technical Committee on Automotive Rubber, jointly sponsored by SAE-ASTM.
Technical Paper

Hydrodynamic Sealing with Radial Lip Seals

1966-02-01
660379
Conventional radial lip oil seals can be made more effective by utilizing helical grooving beneath the contact lip surface. Miniature hydrodynamic pumps so formed aid the radial lip seal in containing the oil by generating fluid forces opposite in direction to the leakage flow forces. This seal-shaft combination has been termed the Hydroseal. Four factorial experiments were conducted to evaluate the effect of helix angle, groove depth, groove width, and number of grooves on sealing performance. The criterion used as a basis for selecting the optimum design were leakage, wear, hardening of the sealing surface, and pumping capacity. These data indicated that the best hydroseal design was one with three grooves, 0.0003 in. deep, 0.014 in. wide, having a helix angle of 45 deg.
Technical Paper

Numerically Controlled Milling for Making Experimental Turbomachinery

1967-02-01
670096
Utilization of numerically controlled milling has been found particularly attractive in producing, in limited quantities, the three-dimensional curved surfaces characteristic of turbomachinery. In experimental and developmental programs its use can result in decreased fabrication cost, reduced lead time, and improved dimensional accuracy. Following a review of the general classifications of numerically controlled milling machines available for manufacture of such parts, illustrations are given of some of the procedures and techniques employed in their use. A variety of parts made using numerical control serve as examples.
Technical Paper

Engine Oil MS Test Sequences IIA and IIIA

1965-02-01
650867
Engine oil test Sequences IIA and IIIA have been developed to replace Sequences I, II, and III. These new sequences are designed to evaluate lubricants for use in current passenger car engines under severe (MS) service conditions. Lubricant performance is evaluated with respect to scuffing wear, rust, corrosion, deposits, and rumble. The Sequence IIA and IIIA test procedure involves major changes which affect the evaluation of engine rusting and provides improved correlation between test results and short-trip service. Average engine rust ratings correlate with service data within ±0.5 numbers. The new test also provides better repeatability and reproducibility in a significantly shorter schedule. The rust repeatability and reproducibility is less than ±0.2 and ±0.6 numbers, respectively. Test time has been reduced 52%.
Technical Paper

2,000,000 Miles of Fluid Evaluation in City Bus Automatic Transmissions

1967-02-01
670185
In certain types of city bus service some automatic transmission fluids can fail in less than 10,000 miles. In order to provide satisfactory transmission performance for longer mileage, improved fluids are required. An investigation was undertaken to obtain improved fluids. Fifteen different fluid formulations were evaluated in 30 city buses operated in normal service for more than 2,000,000 miles. It was determined that fluids fail because of frictional deterioration and oxidation. Based on these evaluations, only two fluids were found to be satisfactory for more than 40,000 miles; one additional fluid was satisfactory for more than 30,000 miles. The remaining 12 fluids failed in less than 20,000 miles.
Technical Paper

V. I. Improvers and Engine Performance

1968-02-01
680071
The use of multigrade (V.I. improved) oils in automotive engines has increased significantly in recent years. However, the performance of these oils in terms of factors such as oil economy, wear, and noise, is not always equal to that of single grade oils. Although the initial viscosity of multigrade oils is related to both the base oil and the V.I. improver, the viscosity decreases with use, with the primary factors determining the magnitude of the change being the degree of shear and the characteristics and concentration of the V.I. improver used. This decrease in viscosity has been assumed to be the cause of the decreases in oil economy that may occur with oil use. However, viscosity changes are not believed to be the primary factor responsible since similar oil economy changes have also been observed for single grade oils. Nevertheless, the characteristics and concentration of the V.I. improver used can be a significant factor influencing oil economy.
X