Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 86
2011-04-12
Technical Paper
2011-01-0905
Andre Kulzer, Tobias Nier, Roland Karrelmeyer
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
2011-04-12
Journal Article
2011-01-0712
Norbert Mueller, Steffen Strauss, Stefan Tumback, Guo-Chang Goh, Ansgar Christ
Engine Start/Stop systems reduce CO₂ emissions by turning off the combustion engine at vehicle standstill. This avoids the injection of fuel that would otherwise be needed simply to overcome internal combustion engine losses. As a next development step, engine losses at higher vehicle speeds are to be addressed. During deceleration, state-of-the-art engine technology turns off fuel injection as soon as the driver releases the gas pedal, thus the combustion engine is motored by the vehicle. The engine's drag torque could be desired by the driver, e.g., as a brake assist during downhill driving. However, quite frequently the driver wishes to coast at almost constant speed. Similar to Start/Stop operation, in such situations fuel is injected to simply overcome the combustion engine's drag torque. An operation mode referred to as "Free-Wheeling" reduces CO₂ emissions under such coasting conditions by disconnecting the combustion engine from the powertrain and by turning it off.
2014-04-01
Technical Paper
2014-01-0189
Bjoern Lumpp, Mouham Tanimou, Martin McMackin, Eva Bouillon, Erica Trapel, Micha Muenzenmay, Klaus Zimmermann
Abstract Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
2015-04-14
Technical Paper
2015-01-0385
Fabian Köpple, Paul Jochmann, Alexander Hettinger, Andreas Kufferath, Michael Bargende
Abstract The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions.
2015-04-14
Journal Article
2015-01-0168
Steffen Lampke, Simon Schliecker, Dirk Ziegenbein, Arne Hamann
Abstract The underlying theories of both control engineering and real-time systems engineering assume idealized system abstractions that mutually neglect central aspects of the other discipline. Control engineering theory, on the one hand, usually assumes jitter free sampling and constant input-output latencies disregarding complex real-world timing effects. Real-time engineering theory, on the other hand, uses abstract performance models that neglect the functional behavior, and derives worst-case situations that have little expressiveness for control functionalities in physically dominated automotive systems. As a consequence, there is a lot of potential for a systematic co-engineering between both disciplines, increasing design efficiency and confidence. We have taken a standard control-engineering tool, Simulink, and combined it with state-of-the-art real-time system design and analysis tools, SymTA/S and TraceAnalyzer from Symtavision.
2010-04-12
Journal Article
2010-01-1082
Andre Kulzer, David Lejsek, Tobias Nier
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
2014-04-01
Journal Article
2014-01-1446
Florian Schulz, Jürgen Schmidt, Andreas Kufferath, Wolfgang Samenfink
Due to the principle of direct injection, which is applied in modern homogeneously operated gasoline engines, there are various operation points with significant particulate emissions. The spray droplets contact the piston surface during the warm-up and early injections, in particular. The fuel wall films and the resulting delayed evaporation of the liquid fuel is one of the main sources of soot particles. It is therefore necessary to carry out investigations into the formation of wall film. The influence of the spray impact angle is of special interest, as this is a major difference between engines with side-mounted injectors and centrally positioned injectors. This paper describes an infrared thermography-based method, which we used to carry out a systematic study of fuel deposits on the walls of the combustion chamber. The boundary conditions of the test section were close to those of real GDI engines operated with homogeneous charge.
2013-04-08
Technical Paper
2013-01-1730
Alexander Eichhorn, David Lejsek, Alexander Hettinger, Andreas Kufferath
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance in the SI engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so new challenges arise concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine was designed for research purposes by Weber Motor GmbH and Robert Bosch GmbH. The design process was described in detail in last year's paper SAE 2012-01-0832. Since the engine design is very modular it allows for several different engine layouts which can be examined and evaluated.
2013-04-08
Journal Article
2013-01-1089
Fabian Köpple, Paul Jochmann, Andreas Kufferath, Michael Bargende
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
2011-04-12
Journal Article
2011-01-0125
David Lejsek, Andre Kulzer
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
2012-04-16
Technical Paper
2012-01-0832
Alexander Eichhorn, David Lejsek, Andre Kulzer, Andreas Kufferath, Eberhard Wizgall, Ralf Centmayer
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance to the SI-engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so leads to new challenges concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine with gasoline direct injection was designed for research purposes by Weber Motor and Bosch. This paper wants to offer an insight in the design process. The mechanical design as well as the combustion system concept process will be discussed.
1992-02-01
Technical Paper
920621
J.H. Spurk, T. Betzel, N. Simon
Rapid opening, closing and rebounds of needle from seat and stopper plate give rise to fluid transients in fuel injectors, which are strongly coupled to the dynamics of needle and body motions. A mathematical model, based on unsteady compressible flow in the injector and steady incompressible flow in inlet and outlet section in conjunction with the equation of motion for needle and body, allows the quantitative description of the injector operation cycle. Agreement between prediction and experiment in terms of needle motion, needle velocity and pressure history is good. The mathematical model is used to show the effects, which various contributions to the hydrodynamic interaction force have on the needle motion, on pressure history and on injected mass.
1993-03-01
Technical Paper
930357
Rainer Dietz, Erich Zabler, Frieder Heintz
In conventional sensor systems, mechanical and electronic components are generally operating at separated locations. Smart sensors integrate mechanical and electronic elements to a single system, thus offering new facilities for a common error compensation. In this concept, a unit-specific temperature dependence and a non-linear characteristic curve of the mechanical sensor element can be tolerated, thus saving a lot of costs in the manufacturing process of the mechanical components. The behaviour of the mechanical sensor element is described by a two-dimensional sensor correction function: Given the output of the mechanical sensor element and a measured value for the temperature, the true measurement value can be calculated by an error correction unit. In this paper, different error correction methods are examined and evaluated which can be used for a wide range of sensor types. They are applied to the example of a short-circuit ring displacement sensor.
1993-03-01
Technical Paper
930437
Arnold W. Millsap, Mark T. Lowden, Michael A. Folkerts, Siegfried Dais, Jan Unruh
A recent extension of the Controller Area Network (CAN) protocol allows an efficient mapping of the SAE J1850 data link messages defined by SAE J2178 into the CAN message format. Compatibility between J1850 and CAN at the message header level allows designers to use the same messages and overall communications strategy for both today's medium speed SAE Class B links and tomorrow's high speed Class C bus applications. This paper presents a proposed mapping of SAE J2178 messages into extended format CAN messages and explains the benefits of this approach for vehicle systems developers.
1998-02-23
Technical Paper
980235
Anton T. van Zanten, Rainer Erhardt, Klaus Landesfeind, Georg Pfaff
Since its introduction in March 1995, the market demand for Vehicle Dynamic Control systems (VDC) has increased rapidly. Some car manufacturers have already announced their plans to introduce VDC on all their models. Particularly for compact and subcompact cars the system price needs to be reduced without sacrificing safety and performance. Originally designed for optimal performance with economically feasible components (sensors, hydraulics and microcontrollers) and using a unified control approach for all vehicle operating situations the system has been extended to include various drive concepts and has continuously been improved regarding performance, safety and cost. This paper describes the progress made in the development of the Bosch VDC system with regard to the design of the hydraulic system, the sensors, the electronic control unit, the control algorithm and safety.
1998-02-23
Technical Paper
980555
Elmar Dilger, Thomas Führer, Bernd Müller, Stefan Poledna
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
1997-02-24
Technical Paper
970301
R. Schöttle, W. Müller, H. Meyer, E. Schoch
In the last years, the requirements for electrical energy systems in motor vehicles have increased considerably. In the past, many studies were focused on single components of the electrical system. However, to shorten the development process, reduce costs, improve reliability and also to optimize the fuel consumption due to the electrical system, the electrical system must be regarded as a whole. The Robert Bosch GmbH has developed a simulation environment, which is intended to improve the development process of new vehicle electrical systems by means of computer simulation. On the basis of a freely selectable driving cycle and various driver models, it is possible to simulate the behavior of electrical energy supply structures. The model of the electrical system is coupled to a dynamic model of the drivetrain. The characteristics of this drivetrain can also be modified and various vehicle models can be selected for simulation.
1997-02-24
Technical Paper
970345
Wolfgang Boehner, Karsten Hummel
Common Rail provides additional flexibility for the design and application of a diesel injection system. Contrary to conventional injection systems pressure generation and injection are decoupled in the common rail system. The injection pressure can be selected independent of engine speed and injected fuel quantity within certain limits. The fuel combustion and the corresponding noise can be improved by increasing the fuel pressure up to 1400 bar and introducing pilot injection or multiple injection. Furthermore the common rail system can replace conventional injection systems without requiring major engine modifications. BOSCH will provide this new injection system for the whole range of applications from light duty (30 kW per cylinder) to heavy duty vehicles (50 kW per cylinder).
1997-11-17
Technical Paper
973284
F. Hecker, S. Hurnrnel, O. Jundt, K. -D. Leirnbach, I. Faye, H. Schramm
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
1993-03-01
Technical Paper
930004
Hans-Jörg Mathony, Karl-Heinz Kaiser, Jan Unruh
Abstract Serial communication by means of CAN is being used more and more for data transfer between in-vehicle control units to link components of the drive train, body electronics and mobile communication electronics. In order to design distributed electronic systems, software engineers today must not only develop the application software but also supply the communication software to handle the communication hardware, thereby reinventing the wheel with each new application software package. This procedure is inefficient as it leads to hardly reusable special solutions. To avoid incompatibilities between the modules of a distributed system a lot of additional coordination work must be done during the design phase. As a consequence, each new software package is faced with additional costs for the indispensible tests of the communication software. This paper describes a network architecture that has been designed for CAN systems.
1995-02-01
Technical Paper
950757
Martin Maier, Klaus Müller
The transition from the multi-component ABS2 design to the one housing concept of ABS5.0 represented a significant step in improving the ABS unit. ABS5.3 is the successor of ABS5.0 to achieve a highly compact, light weight inexpensive design, for the broad use of ABS in all passenger cars and light trucks. New technologies applied are the staking technique for hydraulic components, the use of microhybrid electronics design and solenoid coils being integrated within the attached electronic control unit. The unit can be manufactured in global alliance achieved by simultaneous engineering, applying CAD, FE-analysis, flow calculation and simulation, noise analysis and quality assurance which includes FMEA, error simulation, durability tests and the dry testing concept. The ABS5.3 design can be easily expanded to Traction Control (ASR).
1995-02-01
Technical Paper
950433
Uwe Konzelmann, Hans Hecht, Manfred Lembke
A new mass air flow meter, using a sensor element based on micro silicon technology, is presented. The sensor is able to detect the amount and direction of air flow. It is located in an aerodynamic bypass, which acts as a nonlinear filter. This enables the mass air flow meter to correctly determine the air mass aspirated by a four cylinder engine, even in the case where, due to strong oscillations of the flow, timewise backflow occurs near the measuring position. Results of laboratory and engine tests will be presented.
1995-02-01
Technical Paper
950077
Michael Hübel, Bernhard Blättel, Willi Strohl
In order to optimize the inner flow of the regenerative pump used in gasoline injection systems, we carry out experimental and numerical flow investigations. A qualitative analysis of spatial flow phenomena in selected regions of the pump is presented by employing the laser light sheet technique. Therefore, a tenfold enlarged water model is built up, where dynamic similarity with the original flow is achieved. The results of the flow analysis have led to improved geometries which are compared with the original design by measured pump characteristic curves. Furthermore, three-dimensional simulations of the fully developed turbulent flow using a finite-element method are presented. The flow with respect to the rotating impeller is calculated by solving the Reynolds equations in connection with the k-ε-turbulence model.
1995-02-01
Technical Paper
950081
Detlev Potz, Andreas Kreh, Warga
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
1996-02-01
Technical Paper
960117
Hans-Jörg Mathony, Stefan Poledna
This paper describes the architecture and the implementation of a software for the communication between networked in-vehicle ECUs. The communication software is based upon a real-time multitasking operating system. The operating system and the communication software form an application-independent platform for the implementation of distributed ECU software. The software architecture consists of several communication layers and a station management module. The communication layers provide network driver, data transfer services and an application interface that is independent of the used network protocol. The station management module is responsible for configuration and initialization of the communication controller, error detection during operation and error handling. The modula r structure of the architecture supports the simple adaptation of the software to different bus systems and communication controllers.
1996-02-01
Technical Paper
960756
D. Arand, J. Marek, K. Weiblen, U. Lipphardt
A single-chip integrated barometric pressure sensor using bulk silicon micromachining will be presented in this paper. The sensor chip incorporates the complete signal evaluation and trimming of the temperature coefficients and manufacturing tolerances. Sensor chips are mounted onto 6″ × 4″ thick film substrates for batch processing during assembly and trimming. The separated, individual devices can be used for surface mounting (SMD) on a printed circuit board (PCB). Specifications for the sensor functions, as well as the assembly and packaging concept, will be discussed. Assembly, trimming and packaging are the most expensive production steps in the manufacture of sensors. In order to reduce the costs for sensors, we are introducing a standardization of sensor assembly and trimming with batch processing capability: after dicing, the integrated sensor chip is attached to a 6″ × 4″ thick film ceramic substrate with standard die-attaching glue.
1996-02-01
Technical Paper
960486
Anton Th. van Zanten, Rainer Erhardt, Albert Lutz, Wilfried Neuwald, Hartmut Bartels
A new automotive active safely system, the Vehicle Dynamics Control System (VDC) of BOSCH was introduced on the market in 1995. Besides improving the ABS/ASR functions, VDC will also actively support the driver in critical situations of lateral vehicle dynamics. This system includes new ABS/ASR-control algorithms and a superimposed control algorithm, the vehicle dynamics controller. Furthermore, an extension of the standard ABS/ASR-hydraulic system was necessary as well as the development of new automotive sensors. During all phases of the interdisciplinary system development, tests on experimental cars and extensive computer simulations were used in parallel. In order to provide adequate simulation models for different tasks, a modular concept for the simulation tool is important. Furthermore, a transparent and portable application of the control algorithm for both, experiment and simulation, is required.
1996-02-01
Technical Paper
960870
Gerhard Stumpp, Mario Ricco
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
1998-10-19
Technical Paper
98C011
Klaus Dieterich, Wolfgang Schröder
The continuously increasing performance of modern automotive microelectronics is leading to ever more complex open and closed-loop control functions. Rigid mechanical connections a broken down and electronics applied to make them controllable. Among the examples are camshaft control, or future systems for variable valve-lift control. In addition, the individual systems in the vehicle, such as engine management, transmission-shift control, and ABSR will be networked with one another. The result is a system alliance which communicates through a car-wide web. The major challenge posed by this development in the future, lies in still being able to reliably control the complexity of the system alliance from the point of view of reliability and safety. This means that the suitable sensor and actuator basis, together with an architecture having fixed configuration rulings and matching development methods, are indispensable.
2006-04-03
Technical Paper
2006-01-0855
Dieter Schwarzmann, Rainer Nitsche, Jan Lunze
As a result of the increased complexity of today's power trains, the traditional ways of designing engine control systems essentially through ad hoc methods and experimental tuning will no longer provide the desired level of performance. Further, it is too time-consuming due to the calibration process. In this paper, a novel model-based controller is described which accommodates many of today's demands on controller development of the automotive industry. The control problem treated here is a boost pressure control of a turbocharged diesel engine with a variable nozzle turbine (VNT). Depending on the injected fuel and the current speed of the diesel engine, the boost pressure has to follow a desired trajectory. Since the system is essentially nonlinear, a robust nonlinear controller is used. The tracking problem is treated by a control method which combines the Internal Model Control (IMC) structure with the flatness-based approach to design feedforward controllers.
Viewing 1 to 30 of 86

Filter

  • Range:
    to:
  • Year: