Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Resource-Aware Control - Model-Based Co-Engineering of Control Algorithms and Real-Time Systems

2015-04-14
2015-01-0168
The underlying theories of both control engineering and real-time systems engineering assume idealized system abstractions that mutually neglect central aspects of the other discipline. Control engineering theory, on the one hand, usually assumes jitter free sampling and constant input-output latencies disregarding complex real-world timing effects. Real-time engineering theory, on the other hand, uses abstract performance models that neglect the functional behavior, and derives worst-case situations that have little expressiveness for control functionalities in physically dominated automotive systems. As a consequence, there is a lot of potential for a systematic co-engineering between both disciplines, increasing design efficiency and confidence. We have taken a standard control-engineering tool, Simulink, and combined it with state-of-the-art real-time system design and analysis tools, SymTA/S and TraceAnalyzer from Symtavision.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Overview of Truck Accidents in India and Its Economic Loss Estimation

2021-09-22
2021-26-0007
India contributed to 11% of the global road accidents and was ranked 1st among road deaths according to the latest World Health Organization (WHO) report 2018. Indian National Highways (NH) is a meagre 5% of the country’s road network but accounts for 55% of the road accidents and 61% of the road deaths. Majority of the freight traffic is ferried by Commercial Vehicles (CV) or trucks along these highways and this in turn increases the probability of them being involved in a road accident. The country’s economy is forecasted to thrive in the coming years and hence the requirement of CVs is aligned to international categorisation in the supply chain and shall play a pivotal role. In the year 2019, 13,532 road deaths were associated with CV occupants. The trucking industry is an unorganized sector wherein the illegal overloading of vehicles and over-the-limit driving hours pose a serious threat to road users.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Journal Article

Next Generation Engine Start/Stop Systems: “Free-Wheeling”

2011-04-12
2011-01-0712
Engine Start/Stop systems reduce CO₂ emissions by turning off the combustion engine at vehicle standstill. This avoids the injection of fuel that would otherwise be needed simply to overcome internal combustion engine losses. As a next development step, engine losses at higher vehicle speeds are to be addressed. During deceleration, state-of-the-art engine technology turns off fuel injection as soon as the driver releases the gas pedal, thus the combustion engine is motored by the vehicle. The engine's drag torque could be desired by the driver, e.g., as a brake assist during downhill driving. However, quite frequently the driver wishes to coast at almost constant speed. Similar to Start/Stop operation, in such situations fuel is injected to simply overcome the combustion engine's drag torque. An operation mode referred to as "Free-Wheeling" reduces CO₂ emissions under such coasting conditions by disconnecting the combustion engine from the powertrain and by turning it off.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Journal Article

TPA and NVH Prognosis - Application to Mercedes Benz Car Development of New Hybrid Methods Coupling Digital Simulation with Prototype Testing Results

2012-06-13
2012-01-1535
Digital NVH development has become a common tool for any acoustic engineer. Vehicles in their early development stages are nowadays mainly described and validated as digital models. However there still remain needs for improvement in the domains of acoustic and vibration prediction, as instance: refining models, addressing intricate systems, and CAE resistant phenomena. In a background of increasing modularity and process transfers, hybrid methods coupling with testing results, have shown a great potential for improving the quality of NVH prognosis and development quality. Mercedes-Benz passenger car division has developed, tested and introduced a new engineering tool, based on the classical TPA applications coupled with hybrid simulation techniques. This toolbox is used to enhance the prognoses of acoustic interior noise and vibration comfort.
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

1998-02-23
980324
The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.
Technical Paper

A New Object-Oriented Diagnostic System Management for Powertrain Control Units with OBD

1998-02-23
980512
This paper describes the concept of the Diagnostic System Management DSM which introduces an improved object-oriented software architecture in order to meet the high performance and reliability requirements of automotive On-Board Diagnostic Systems (OBD). DSM handles standard tasks and offers services to integrate diagnostic and control functions. This architecture enables the flexible composition of system-independent, reusable function implementations. Hence a distributed software development and software sharing are supported. The module DSM consists of a Fault Code Memory, an Inhibit Handler, a Validator and a Function Scheduler. Special care has been taken to achieve robustness against EMI effects. Bosch will use DSM in the future powertrain control systems.
Technical Paper

A Small, Light Radar Sensor and Control Unit for Adaptive Cruise Control

1998-02-23
980607
The first generation of radar-sensor-based ACC-Systems will be available in 1998/1999 in Europe. As a first step high end car manufacturers will sell ACC as optional equipment in their top models for a significant add-on price. For this generation good performance was the most important development goal. For the future, however, small, highly integrated systems are needed which easily can be fitted into the body of small cars. High performance and low cost are essential to allow the car manufacturers to sell ACC as standard equipment. A first step in that direction is the “Sensor and Control Unit” developed by Bosch which integrates a FMCW-radar sensor and the ACC-controller in one housing. It is designed for easy manufacturing on existing equipment with standard processes. The design meets the requirements of an early phase with low production figures as well as a phase characterized by increasing numbers and decreasing prices.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
X