Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Technical Paper

A New Passive Interface to Simulate On-Vehicle Systems for Direct-to-Module (DTM) Engine Control Module (ECM) Data Recovery

2010-10-05
2010-01-1994
Investigators of vehicular incidents often seek to recover data stored within on-board computer systems. For commercial vehicles, the primary source for this information is the engine control module (ECM). The data stored in these modules, not unlike passenger vehicles, varies widely among manufacturers, as do the hardware and software required to recover such data. Further, the options, and associated risks, involved with attempting to recover this data has a similarly wide variance relative to the engine manufacturer, incident related circumstances, and the tools currently available to perform such downloads. There are two primary paths available to obtain this data: (1) via the vehicle data bus (e.g. SAE J1939 or J1708 ) or (2) direct-to-module (DTM) connection. When using the DTM method, power is applied to an ECM, and the module measures the various engine control and monitoring components for validity.
Technical Paper

Stiffness Coefficients of Heavy Commercial Vehicles

2013-04-08
2013-01-0796
Accident reconstruction specialists have long relied on post-crash deformation and energy equivalence calculations to determine impact severity and the experienced change in velocity during the impact event. In order to utilize post-crash deformation, information must be known about the vehicle's structure and its ability to absorb crash energy. The Federal Motor Vehicle Safety Standards (FMVSS), the New Car Assessment Program (NCAP), and the Insurance Institute of Highway Safety (IIHS), have created databases with crash testing data for a wide range of vehicles. These crash tests allow reconstruction specialists to determine a specific vehicle's ability to absorb energy as well as to generalize the energy absorption characteristics across vehicle classes. These methods are very well publicized.
X