Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimization and Experimental Analysis of AZ91E Hybrid Nanocomposite by Drilling Operation

2020-09-25
2020-28-0509
The usage of AZ91E series magnesium alloy material increases in the field of automobile, aerospace and structural applications because of its enhanced mechanical properties, light weight and good machinability characteristics. The present investigation is to optimize the drilling process parameters of magnesium alloy (AZ91E) hybrid nano composite consisting of chopped basalt fiber (9wt%) and SiCp (7.5wt%) fabricated by vacuum stirring technique. AZ91E hybrid nano composite is drilled by M-Tab vertical machining centre equipped with CNC under dry state (without coolant). The dry state drilling operation was performed by HSS tool with varied input parameters like drill diameter (6mm, 8mm, 10mm and 12mm), spindle speed (200rpm, 300rpm 400rpm 500rpm), feed rate (5mm/min, 10mm/min, 15 mm/min, 20 mm/min) with constant depth of cut (15mm).
Technical Paper

Optimization of Machining Process Parameters for Minimizing the Waste Stream Response through Multi-Objective Optimization

2019-10-11
2019-28-0062
During the delivering of an item, any material created moreover to a definitive item will be named as waste. The waste produced in light of machining could be a notable conservation worry for creators. The shape and condition of waste streams created, and their transportation components divergence with the strategy utilized and also shift among the technique. The effect in view of each waste stream differs as well. This examination reports a machining strategy includes the procedure of material to give a completed or a semi-completed item. This is frequently done by misapplication tools, totaling, machines and distinctive data sources that are appropriate to the strategy. The procedures thought of for the point of this work includes machining of material manipulation devices to give parts and items. The yield of the technique incorporates the item and increase the waste streams. The waste streams will be in the form of Chips, Energy usage, and Worn cutting tools and Operating time.
Technical Paper

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

2019-10-11
2019-28-0055
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipment’s are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed.
Technical Paper

Improvement of Mechanical Properties, and Optimization of Process Parameters of AISI 1050 Spheriodized Annealed Steel by Ranking Algorithm

2019-10-11
2019-28-0143
AISI 1050 is used in the production of landing gear, actuators and other aerospace components but their application is limited due to machinability of the material. In any metal cutting operation the features of tools, input work materials, machine parameter settings will influence the process efficiency and output quality characteristics. A significant improvement in process efficiency may be obtained by process parameter optimization that identifies and determines the regions of critical process control factors leading to desired outputs or responses with acceptable variations ensuring a lower cost of manufacturing. This experimental study elucidates the problems and machinability issues like failure of tools and accuracy are found while machining and less output in machining. In the present study of spherodizing heat treatment of AISI 1050 was investigated during the turning operation in CNC lathe, under the consideration of several turning process parameters.
Technical Paper

Development and Influence of Setting Process Variables in Single Point Incremental Sheet Metal Forming of AA 8011 Using Complex Proportional Assessment and ANOVA

2019-10-11
2019-28-0064
Single point Incremental forming (SPIF) is a metal forming process that has achieved impeccable quality since the early 1990s. ISF is a very limited twisting process in which an improved device that must be used after a particular direction travels on a metal sheet to form the desired shape. Process parameters such as axial feed (mm), feed (mm / min), tool diameter (mm) and depth (mm) at the interface between samples during SPIF greatly affect the quality of the cone. Maximum thinning (mm), cone height (mm), wall angle (mm), formation time (minutes), etc. The purpose of this study was to study these parameters by improving the cone mass formed by VMC. For a detailed study of these parameters, experiments were performed using the orthogonal array L9. Output parameters such as mechanical quality effects were analysed using COPRAS (Complex Proportional Assessment of alternatives) and ANOVA.
X