Criteria

Text:
Display:

Results

Viewing 1 to 12 of 12
2010-10-25
Journal Article
2010-01-2104
Ulf Aronsson, Clément Chartier, Öivind Andersson, Bengt Johansson, Johan Sjöholm, Rikard Wellander, Mattias Richter, Marcus Alden, Paul C. Miles
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
2011-04-12
Journal Article
2011-01-1383
Clément Chartier, Oivind Andersson, Bengt Johansson, Mark Musculus, Mohan Bobba
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
2011-08-30
Journal Article
2011-01-1812
Christopher J. Polonowski, Charles J. Mueller, Christopher R. Gehrke, Tim Bazyn, Glen C. Martin, Peter M. Lillo
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
2007-10-30
Technical Paper
2007-01-4202
Larry D. Scott, John R. Barnum
When considering the addition of radio frequency reception and transmission equipment to the suite of electronics already installed on a modern motor vehicle, numerous issues must be considered and tested to ensure reliable and safe operation not only of the additional equipment but the vehicle itself. This paper addresses some of the major issues and suggests modest design and testing practices that will accomplish the desired reliability and safety. The modest design and testing proposed addresses good engineering practices of electrically bonding metallic surfaces of the vehicle, grounding equipment, shielding signal cables, introducing filters, and appropriately separating cables into bundles.
1999-04-26
Technical Paper
1999-01-2238
Rose McCallen, Richard Couch, Juliana Hsu, Fred Browand, Mustapha Hammache, Anthony Leonard, Mark Brady, Kambiz Salari, Walter Rutledge, James Ross, Bruce Storms, J.T. Heineck, David Driver, James Bell, Gregory Zilliac
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
2000-06-19
Technical Paper
2000-01-2209
Rose McCallen, Dan Flowers, Tim Dunn, Jerry Owens, Fred Browand, Mustapha Hammache, Anthony Leonard, Mark Brady, Kambiz Salari, Walter Rutledge, James Ross, Bruce Storms, J. T. Heineck, David Driver, James Bell, Steve Walker, Gregory Zilliac
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
2001-03-05
Technical Paper
2001-01-1295
John E. Dec, Dale R. Tree
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
2015-09-06
Journal Article
2015-24-2436
Randy Hessel, Rolf D. Reitz, Zongyu Yue, Mark P. B. Musculus, Jacqueline O'Connor
Abstract This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
2007-10-30
Technical Paper
2007-01-4203
Paul C. Haddock
By using a radio frequency (RF) audio distortion measurement test setup, communication devices can be evaluated for degradation caused by electromagnetic interference (EMI) from active vehicle components. This measurement technique can be used to determine the performance of a radio receiver under a variety of conditions. The test setup consists of making measurements on a baseband audio signal that is sent to the device under test (receiver) via over-the-air RF transmissions. Once a baseline is established, active components on the vehicle can be powered on to determine their contribution to the receiver's degradation. The degradation measured is a result of distortion caused by conducted, radiated, and/or coupled EMI from active components into the receiver's passband.
2005-11-01
Technical Paper
2005-01-3511
Rose McCallen, Kambiz Salari, Jason Ortega, Paul Castellucci, John Paschkewitz, Craig Eastwood, Larry Dechant, Basil Hassan, W. David Pointer, Fred Browand, Charles Radovich, Tai Merzel, Dennis Plocher, Anthony Leonard, Mike Rubel, James Ross, J. T. Heineck, Stephen Walker, Bruce Storms, Christopher Roy, David Whitfield, Ramesh Pankajakshan, Lafayette Taylor, Kidambi Sreenivas, Robert Englar
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
2016-04-05
Journal Article
2016-01-0743
W. Ethan Eagle, Louis-Marie Malbec, Mark PB Musculus
Abstract This paper presents new measurements of liquid and liftoff lengths, vapor penetration, and ignition delay using the Engine Combustion Network (ECN) ‘Spray B’ injector in a 2.34 L skip-fired heavy-duty optical engine. The data from the Spray B injector, having three 90-micron holes, are compared with previously existing constant-volume vessel data using both the Spray B injector as well as the ECN Spray A injector, which has a single 90-micron axial hole. The new data were acquired using Mie scattering, OH* chemiluminescence imaging, schlieren imaging, and incylinder pressure measurements. This paper presents data from estimated isentropic-core top-dead-center conditions with ambient densities of 15.2 and 22.8 kg/m3, temperatures of 800, 900, and 1000 K, and for both non-reacting (0% and 7.5% O2) and reacting (13, 15, and 21% O2) injections of n-dodecane at fuel-rail pressures of 500, 1000, and 1500 bar.
2013-04-08
Journal Article
2013-01-0910
Jacqueline O'Connor, Mark Musculus
Partially premixed low-temperature combustion (LTC) using exhaust-gas recirculation (EGR) has the potential to reduce engine-out NOx and soot emissions, but increased unburned hydrocarbon (UHC) emissions need to be addressed. In this study, we investigate close-coupled post injections for reducing UHC emissions. By injecting small amounts of fuel soon after the end of the main injection, fuel-lean mixtures near the injector that suffer incomplete combustion can be enriched with post-injection fuel and burned to completion. The goal of this work is to understand the in-cylinder mechanisms affecting the post-injection efficacy and to quantify its sensitivity to operational parameters including post-injection duration, injection dwell, load, and ignition delay time of the post-injection mixture.
Viewing 1 to 12 of 12

    Filter

    • Range:
      to:
    • Year: