Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 45
1984-10-01
Technical Paper
841359
J. A. Gatowski, E. N. Balles, K. M. Chun, F. E. Nelson, J. A. Ekchian, John B. Heywood
In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation for γ(T). Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.
1984-10-01
Technical Paper
841379
E. N. Balles, J. A. Ekchian, John B. Heywood
High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder DISC engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder.
1987-02-01
Technical Paper
870587
K. J. Colella, E. N. Balles, J. A. Ekchian, W. K. Cheng, John B. Heywood
Difficulties in the starting and operation of diesel engines at low temperatures are an important consideration in their design and operation, and in selection of the fuels for their use. Improvements in operation have been achieved primarily through external components of the engine and associated subsystems. A Rapid Compression Machine (RCM) has been modified to operate over a wide range of temperatures (−20°C to 100°C). It is used to isolate the combustion chamber in an environment in which all significant parameters are carefully defined and monitored. The influence of temperature and cetane number on the ignition and combustion processes are analyzed. Examination of the combustion characteristics show that temperature is by far the most influential factor affecting both ignition delay and heat release profiles. Cetane number (ASTM D-613) is not found to be a strong indicator of ignition delay for the conditions investigated.
1982-02-01
Technical Paper
820088
M. Namazian, John B. Heywood
The flow into and out of the piston top-land crevice of a spark-ignition engine has been studied, using a square-cross-section single-cylinder engine with two parallel quartz glass walls which permit optical access to the entire cylinder volume. Schlieren short-time exposure photographs and high speed movies were used to define the essential features of this flow. The top-land crevice and the regions behind and between the rings consist of volumes connected through the ring gaps. A system model of volumes and orifices was therefore developed and used to predict the flow into and out of the crevice regions between the piston, piston rings and cylinder wall.
2009-06-15
Journal Article
2009-01-1892
John B. Heywood, Orian Z. Welling
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
2006-04-03
Technical Paper
2006-01-0229
Ferrán A. Ayala, Michael D. Gerty, John B. Heywood
In an effort to both increase engine efficiency and generate new, consistent, and reliable data useful for the development of engine concepts, a modern single-cylinder 4-valve spark-ignition research engine was used to determine the response of indicated engine efficiency to combustion phasing, relative air-fuel ratio, compression ratio, and load. Combustion modeling was then used to help explain the observed trends, and the limitations on achieving higher efficiency. This paper analyzes the logic behind such gains in efficiency and presents correlations of the experimental data. The results are helpful for examining the potential for more efficient engine designs, where high compression ratios can be used under lean or dilute regimes, at a variety of loads.
2006-04-03
Technical Paper
2006-01-0228
Michael D. Gerty, John B. Heywood
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
2005-04-11
Technical Paper
2005-01-1642
Liang Liu, Tian Tian
Based upon a hydrodynamic lubrication model used in journal bearing simulation, a one-dimensional flow continuity algorithm was developed in modeling ring-liner lubrication. By applying a “universal” differential equation to the entire ring-liner interface, the starting and ending points of full film can be located automatically. Considering the oil flow difference in the regions partially filled by oil between the ring/liner lubrication and bearing lubrication, the traditional assumption that the streams of oil and oil-vapor/air attach to both surfaces was relaxed in this model. Corresponding to this improvement, a transition region was introduced to smooth out the discontinuity of convection flow at the interface between a region fully filled by oil and a region partially filled by oil. Moreover, a distribution of standard pressure, which is crucial in formulating the universal differential equation, was proposed.
2005-04-11
Technical Paper
2005-01-1641
Liang Liu, Tian Tian
The lubrication of the piston ring-pack is directly related to the engine friction and oil consumption. Non-axisymmetric characteristics of the power cylinder system, most noticeably cylinder bore distortion, piston secondary motion, and ring gaps, can introduce circumferential variations to ring/liner lubrication and overall performance of the ring-pack in friction and oil consumption. In order to be able to optimize the piston ring-pack in a more fundamental way, it is necessary to develop physical understanding of the effects of these non-axisymmetric properties and effective numerical tools. In this study, a comprehensive model has been developed for the lubrication of a piston ring-pack. By employing a finite element analysis, this model is capable of evaluating the in-plane structural response of a ring to external forces. A newly developed one-dimensional hydrodynamic lubrication sub-model is implemented to calculate the lubrication force at each cross-section.
2009-11-02
Journal Article
2009-01-2622
Vikram Mittal, John B. Heywood
Since the advent of the spark ignition engine, the maximum engine efficiency has been knock limited. Knock is a phenomena caused by the rapid autoignition of fuel/air mixture (endgas) ahead of the flame front. The propensity of a fuel to autoignite corresponds to its autoignition chemistry at the local endgas temperature and pressure. Since a fuel blend consists of many components, its autoignition chemistry is very complex. The octane index (OI) simplifies this complex autoignition chemistry by comparing a fuel to a Primary Reference Fuel (PRF), a binary blend of iso-octane and n-heptane. As more iso-octane is added into the blend, the PRF is less likely to autoignite. The OI of a fuel is defined as the volumetric percentage of iso-octane in the PRF blend that exhibits similar knocking characteristics at the same engine conditions.
1998-10-19
Technical Paper
982471
Robert Meyer, Ertan Yilmaz, John B. Heywood
Liquid fuel flow into the cylinder an important source of hydrocarbon (HC) emissions of an SI engine. This is an especially important HC source during engine warm up. This paper examines the phenomena that determine the inflow of liquid fuel through the intake valve during a simulated start-up procedure. A Phase Doppler Particle Analyzer (PDPA) was used to measure the size and velocity of liquid fuel droplets in the vicinity of the intake valve in a firing transparent flow-visualization engine. These characteristics were measured as a function of engine running time and crank angle position during four stroke cycle. Droplet characteristics were measured at 7 angular positions in 5 planes around the circumference of the intake valve for both open and closed-valve injection. Additionally the cone shaped geometry of the entering liquid fuel spray was visualized using a Planar Laser Induced Fluorescence (PLIF) setup on the same engine.
2006-10-16
Technical Paper
2006-01-3399
Dongkun Lee, John B. Heywood
An experimental study was performed to investigate the effects of various intake charge motion control valves (CMCVs) on mixture preparation, combustion, and hydrocarbon (HC) emissions during the cold start-up process of a port fuel injected spark ignition (SI) engine. Different charge motions were produced by three differently shaped plates in the CMCV device, each of which blocked off 75% of the engine's intake ports. Time-resolved HC, CO and CO2 concentrations were measured at the exhaust port exit in order to achieve cycle-by-cycle engine-out HC mass and in-cylinder air/fuel ratio. Combustion characteristics were examined through a thermodynamic burn rate analysis. Cold-fluid steady state experiments were carried out with the CMCV open and closed. Enhanced charge motion with the CMCV closed was found to shorten the combustion duration, which caused the location of 50% mass fraction burned (MFB) to occur up to 5° CA earlier for the same spark timing.
2006-10-16
Technical Paper
2006-01-3400
Kevin R. Lang, Wai K. Cheng
The interaction of intake port gas flow with the fuel spray in a port-fuel-injection engine is studied to see whether there are opportunities to facilitate the mixture preparation process and to improve the HC emissions through this interaction. The operating regime of interest is the fast idle period in a cold start. For single pulse injection, the HC emissions were not sensitive to injection details for closed-valve injection; emissions increased with open-valve injection. Then a split injection strategy was used in which the fuel was divided into two pulses. The first pulse was delivered during valve-closed; the second pulse was injected in the back flow period. Under cold-valve conditions, a small benefit (compared to close valve injection) was obtained with a second pulse fuel of 25%: 6% decrease in Specific HC emissions and 4.5% increase in the fuel delivery fraction.
2004-06-08
Technical Paper
2004-01-1934
Adam Vokac, Tian Tian
Faced with increasing concern for lubricating oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions along the piston ring pack before being consumed in the combustion chamber, with the oil distribution and dominant driving forces varying substantially for each of these regions. In this work, the focus is on the lowest region in the piston ring pack, namely the third land, which is located between the second compression ring and the oil control ring. A detailed 2D LIF (Two Dimensional Laser Induced Fluorescence) study has been performed on the oil distribution and flow patterns of the third land throughout the entire cycle of a single cylinder spark ignition engine. The impact of speed and load were experimentally observed with the LIF generated real time high-resolution images, as were changes in piston and ring design.
2003-10-27
Technical Paper
2003-01-3237
Brian E. Hallgren, John B. Heywood
Experiments were conducted to determine the effects of substantial spark retard on combustion, hydrocarbon (HC) emissions, and exhaust temperature, under cold engine conditions. A single-cylinder research engine was operated at 20° C fluid temperatures for various spark timings and relative air/fuel ratios. Combustion stability was observed to decrease as the phasing of the 50% mass fraction burned (MFB) occurred later in the expansion stroke. A thermodynamic burn rate analysis indicated combustion was complete at exhaust valve opening with -20° before top dead center (BTDC) spark timings. Chemical and thermal energy of the exhaust gas was tracked from cylinder-exit to the exhaust runner. Time-resolved HC concentrations measured in the port and runner were mass weighted to obtain an exhaust HC mass flow rate. Results were compared to time averaged well downstream HC levels.
2005-04-11
Technical Paper
2005-01-0253
Žiga Ivanič, Ferrán Ayala, Joshua Goldwitz, John B. Heywood
Dilute operation of a SI engine offers attractive performance incentives. Lowered combustion temperatures and changes in the mixture composition inhibit NOx formation and increase the effective value of the ratio of burned gas specific heats, increasing gross indicated efficiency. Additionally, reduced intake manifold throttling minimizes pumping losses, leading to higher net indicated efficiency. These benefits are offset by the reduced combustion speed of dilute fuel-air mixtures, which can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics. Hydrogen enhancement can suppress the undesirable consequences of dilute operation by accelerating the combustion process, thereby extending the dilution limit. Hydrogen would be produced on-board the vehicle with a gasoline reforming device such as the plasmatron. High dilution at higher loads would necessitate boosting to meet the appropriate engine specific power requirements.
2005-04-11
Technical Paper
2005-01-0162
Halim Santoso, Jeff Matthews, Wai K. Cheng
Gasoline HCCI engine has the potential of providing better fuel economy and emissions characteristics than the current SI engines. However, management of HCCI operation for a vehicle is a challenging task. In this paper, the issues of mode transitions between the Spark Ignition and HCCI regimes, and the dynamic nature of the load trajectory within the HCCI regime are considered. Then the phenomena encountered in these operations are illustrated by the data from a single-cylinder engine with electromagnetic-variable-valve timing control. Mode transitions from the SI to HCCI regime may be categorized as robust and non-robust. In a robust transition, every intended HCCI cycle is successful. In a non-robust transition, one or more intended HCCI cycles misfire, although the cycles progress to a satisfactory HCCI operating point in steady state. (The spark ignition was kept on so that the engine could recover from a misfired cycle.)
2005-04-11
Technical Paper
2005-01-0150
Jeff Matthews, Halim Santoso, Wai K. Cheng
Homogeneous-Charge-Compression-Ignition (HCCI) engine operation in a vehicle drive cycle is a very dynamic process. In this paper, a controller is devised on the premise that the vehicle is operating under Drive-By-Wire so that the driver commands the engine torque output according to the perceived vehicle speed. Thus a load-following controller is appropriate. Such a controller was developed for a single cylinder engine with electromagnetic variable valve timing control (also known as Controlled-Auto-Ignition (CAI) operation). Under open-loop operation within the CAI regime, the results indicated that the engine response was bipolar in nature: (a) the engine either responded quasi-statically to the open-loop control, or (b) the CAI combustion failed. The latter happened in a load increase process in which the per-cycle increment was too high.
2005-04-11
Technical Paper
2005-01-0251
Joshua A. Goldwitz, John B. Heywood
As part of ongoing research on hydrogen-enhanced lean burn SI engines, this paper details an experimental combustion system optimization program. Experiments focused on three key areas: the ignition system, in-cylinder charge motion produced by changes in the inlet ports, and uniformity of fuel-air mixture preparation. Hydrogen enhancement is obtained with a H2, CO, N2 mixture produced by a fuel reformer such as the plasmatron. The ignition system tests compared a standard inductive coil scheme against high-energy discharge systems. Charge motion experiments focused on the impact of different flow and turbulence patterns generated within the cylinder by restrictor plates at the intake port entrance, as well as novel inlet flow modification cones. The in-cylinder fluid motion generated by each configuration was characterized using swirl and tumble flow benches.
2004-10-25
Technical Paper
2004-01-2912
Yeunwoo Cho, Tian Tian
A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of a number of distinct paraffin hydrocarbons, a set of equations governing the oil vapor density variations were derived by applying mass conservation law to the amount of oil vaporized from the piston and the amount of oil vapor transported within the piston ring pack. The model was applied to a heavy-duty diesel engine. First, the case with the maximum oil supply to all the piston regions was studied. The results showed that, under this condition, the oil consumption from piston vaporization alone was far greater than the typical oil consumption value measured in the engine.
2004-10-25
Technical Paper
2004-01-2909
Ertan Yilmaz, Tian Tian, Victor W. Wong, John B. Heywood
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
2004-10-25
Technical Paper
2004-01-2911
S. H. Mansouri, V. W. Wong
In this paper, a previously developed and experimentally-validated piston secondary motion model has been improved further numerically and applied to understand the detailed interactions between the piston skirt and cylinder liner for various piston design parameters. The model considers the roughness of the surfaces and the topography of the skirt in both the axial (barrel profile) and circumferential directions (ovality). Three modes of lubrication: hydrodynamic, mixed, and boundary lubrication regimes have been considered and the skirt is partially flooded in most cases. Elastic deformation of the skirt is an essential part of the model. In this model, the piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle and are examined in detail. Parameters investigated include piston skirt profile, piston to liner clearance, surface roughness, and oil availability.
2003-05-19
Technical Paper
2003-01-1874
Yuetao Zhang, Wai K. Cheng
The catalyst oxygen storage capacities were measured over a test matrix consisted of fuels with 7, 33, 266 and 500 ppm sulfur, and of dynamometer-aged catalysts simulating 4K, 50K and 150K vehicle miles. A methodology was developed to relate the post-catalyst λ sensor response following an engine lean-step-transient to the total oxygen storage sites available. The time resolved NOx concentration profiles (which were most sensitive to the oxygen storage) in the catalyst were measured with the engine operating at λ modulations of various amplitudes and frequencies. The oxygen storage capacity deterioration comprised two multiplicative factors - an age factor which decreased quickly initially (by a factor of 2 from 4K to 50K miles), and then more modestly (by 30% from 50 to 150K miles), and a fuel sulfur factor which decreased by 10% for every 150 ppm increase in sulfur level.
2004-03-08
Technical Paper
2004-01-0975
Jennifer A. Topinka, Michael D. Gerty, John B. Heywood, James C. Keck
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
2008-04-14
Technical Paper
2008-01-0794
Steve Przesmitzki, Tian Tian
This paper presents the follow up to previous work done by Przesmitzki and Tian [1] studying large increases in blow-by in a spark ignition engine during transient load changes. This study examines the sensitivity of such blow-by spikes to differing intake pressures, and the time spent under both high and low intake pressure. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to explain certain phenomenon observed during the experiments. The previous work found that a very large blow-by spike could occur upon a transition from low engine load to a high engine load. The hypothesis was the top ring groove was being filled with oil during low engine load. Thereafter, it was hypothesized a transition to high load resulted in radial collapse of the top ring, and the subsequent blow by spike.
2008-06-23
Technical Paper
2008-01-1613
Haijie Chen, Yong Li, Tian Tian
This paper presents a model for the lubrication and friction between a twin land oil control ring and the liner within an engine cycle. This model is based on the deterministic method, which considers micro geometry of the liner finish and its effects on both hydrodynamic lubrication and asperity contact. In this particular application, the liner surface micro features are solely responsible for hydrodynamic pressure generation due to the flat face profile of a typical twin land oil control ring, contrasting to the traditional average model where ring surface macro geometry is most important in generating hydrodynamic pressure.
2008-06-23
Technical Paper
2008-01-1614
Haijie Chen, Tian Tian
This paper discusses the influences of several cylinder liner honing surface geometrical features on the interaction between the piston twin land oil control ring (TLOCR) and the cylinder liner by using the deterministic hydrodynamic model [1] and the twin land oil control ring model [2]. Additionally, the key design parameters of the TLOCR, including ring tension and land axial width are studied. The results show significant effects of three liner honing surface features beyond height distribution, including plateau wavelength, groove density and honing angle in hydrodynamic pressure generation. The study in oil control ring design parameters reveals that both ring tension and land axial width have important influences on friction and oil consumption, and their competing effects are discussed subsequently.
2008-06-23
Technical Paper
2008-01-1615
Yong Li, Haijie Chen, Tian Tian
A general deterministic hydrodynamic lubrication model [1] was modified to study the interaction between a Twin Land Oil Control Ring (TLOCR) and a liner with cross-hatch liner finish. Efforts were made to customize the general model to simulate the particular sliding condition of TLOCR/liner interaction with proper boundary conditions. The results show that model is consistent, robust, and efficient. The lubricant mass conservation was justified and discussed. Then analysis was conducted on the lubricant transport between the deep grooves/valleys and plateau part of the surface to illustrate the importance of deep grooves in oil supply to the plateau part and hydrodynamic pressure generation. Furthermore, since the TLOCR land running surface is completely flat and parallel to the nominal liner axis, the liner finish micro geometry is fully responsible for the hydrodynamic pressure rise, which was found to be sufficient to support significant portion of the total ring radial load.
2008-06-23
Technical Paper
2008-01-1612
Fiona McClure, Tian Tian
A dry piston secondary dynamics model has been developed. This model includes the detailed piston and cylinder bore hot shape geometries, and piston deformations due to combustion pressure, axial inertia and interaction with the cylinder bore, but neglects the effects of the hydrodynamic lubrication at the piston - cylinder bore interface in order to achieve faster calculation times. The piston - cylinder bore friction is calculated using a user supplied friction coefficient. This model provides a very useful, fast tool for power cylinder system analysis, provided its limitations are understood.
2007-10-29
Technical Paper
2007-01-4013
Robert J. Scaringe, Wai K. Cheng
The effects of the directed port flow produced by a Charge-Motion-Control-Valve (CMCV) on mixture preparation in a Port-Fuel-Injection engine were assessed under conditions typical of fast idle in a cold start process. The port fuel was found to comprise two components: a “valve” puddle (at the vicinity of the valve) that built up quickly, and that was mainly responsible for the delivery of the fuel to the cylinder charge; a “port” puddle located significantly upstream. The latter was mainly created by the reverse back flow process and built up slowly. Although the fuel amounts in these two components were roughly the same, the latter did not significantly interact with the fuel transport to the cylinder charge. The CMCV only weakly affected the purging or filling time of the valve puddle, hence the dynamics of the fuel delivery process was not materially affected.
Viewing 1 to 30 of 45

Filter

  • Range:
    to:
  • Year: