Criteria

Text:
Display:

Results

Viewing 1 to 30 of 69
2013-09-08
Technical Paper
2013-24-0106
Steven G. Fritz, John C. Hedrick, James A. Rutherford
The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. Systematic, credible, and carefully designed and executed locomotive fuel effect studies produce statistically significant conclusions are very scarce, and only cover a very limited number of locomotive models. Most locomotive biodiesel work has been limited to cursory demonstration programs. Of primary concern to railroads and regulators is understanding any exhaust emission associated with biodiesel use, especially NOX emissions. In this study, emissions tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1+ GE Dash9-44CW with two baseline fuels, conventional EPA ASTM No. 2-D S15 (commonly referred to as ultra-low sulfur diesel - ULSD) certification diesel fuel, and commercially available California Air Resource Board (CARB) ULSD fuel.
2011-04-12
Technical Paper
2011-01-1207
Wim Van Dam, Mark W. Cooper, Kenneth Oxorn, Scott Richards
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
2011-09-13
Technical Paper
2011-01-2274
Chinmaya Patil, Michael olson, Benjamin Morris, Clark Fortune, Bapiraju Surampudi, Joe Redfield, Heather Gruenewald
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
2011-09-13
Journal Article
2011-01-2232
Marc Megel, Barry Westmoreland, Guy Jones, Ford Phillips, Douglas Eberle, Mark Tussing, NIgel Yeomans
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
1999-10-25
Technical Paper
1999-01-3574
Thomas W. Ryan, Ed Owens, David Naegeli, Jim Doglio, Glenn Blyth, Wim van Dam, Bernard Damin, Cherian Olikara, Fred Villforth
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
2000-03-06
Technical Paper
2000-01-0187
Magdi Khair, Jacques Lemaire, Stefan Fischer
The diesel engine has long been the most energy efficient powerplant for transportation. Moreover, diesels emit extremely low levels of hydrocarbon and carbon monoxide that do not require post-combustion treatment to comply with current and projected standards. It is admittedly, however, difficult for diesel engines to simultaneously meet projected nitrogen oxides and particulate matter standards. Traditionally, measures aimed at reducing one of these two exhaust species have led to increasing the other. This physical characteristic, which is known as NOx/PM tradeoff, remains the subject of an intense research effort. Despite this challenge, there is significant evidence that heavy-duty highway engine manufacturers can achieve substantial emission reductions. Many development programs carried out over the last five years have yielded remarkable results in laboratory demonstrations.
2011-01-19
Technical Paper
2011-26-0078
Thomas E. Reinhart
This paper reviews the technologies available for Bharat Stage 3 and 4 Heavy Duty on-highway emissions standards. Benchmarking data from several existing engines is used to explore the trade-offs between engine/vehicle cost and fuel consumption. Other implications of the available technologies, such as durability / reliability requirements, are also addressed. The paper provides recommendations for low cost approaches to meeting Bharat Stage 3 and 4 standards with good fuel consumption and reliability/ durability characteristics. A brief look ahead to future Bharat Stage 5 requirements is also provided.
2012-09-24
Journal Article
2012-01-1979
Shinhyuk Michael Joo, Terrence Alger, Christopher Chadwell, William De Ojeda, Jacob Zuehl, Raphael Gukelberger
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
2012-04-16
Journal Article
2012-01-1250
Thomas L. Bougher, Imad A. Khalek, Christopher A. Laroo, Dipak K. Bishnu
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
2016-09-27
Technical Paper
2016-01-8009
Michael Brown, Purser Sturgeon
Abstract While initial Connected Vehicle research in the United States was focusing almost exclusively on passenger vehicles, a program was envisioned that would enhance highway safety, mobility, and operational efficiencies through the application of the technology to commercial vehicles. This program was realized in 2009 by funding from the I-95 Corridor Coalition, led by the New York State Department of Transportation, and called the Commercial Vehicle Infrastructure Integration (CVII) program. The CVII program focuses on developing, testing and deploying Connected Vehicle technology for heavy vehicles. Since its inception, the CVII program has developed numerous Vehicle-to-Vehicle and Vehicle-to-Infrastructure applications for trucks that leverage communication with roadside infrastructure and other light and heavy duty vehicles to meet the objectives of the program.
2006-10-31
Technical Paper
2006-01-3474
L. Joseph Bachman, Anthony Erb, Cheryl Bynum, Brent Shoffner, Hector De La Fuente, Carl Ensfield
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
1990-10-01
Technical Paper
902264
Rodney Doe, Louis Klusmeyer, Mike Van Schoiack
Antilock brake systems for air braked vehicles have been growing in popularity in Great Britain and Europe and appear to be candidates for extensive use in the United States as well. Previous mandated use in the United States during the 1970's was not successful, in part because of reliability problems, and the National Highway Traffic Safety Administration (NHTSA) has decided that a thorough evaluation of air brake antilock systems is necessary prior to any decision about the appropriateness of future mandatory use in the United States. This paper describes the electronic data collection equipment and processing techniques which are being used in the NHTSA 200 truck evaluation project. Detailed maintenance histories for each truck are being recorded manually as a separate segment of the project. An average of 6 to 7 megabytes of data per week is being collected in the various cities in which fleets are operating test vehicles.
1992-02-01
Technical Paper
920727
David M. Human, Terry L. Ullman
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
1992-10-01
Technical Paper
922362
Roy Meyer, David Meyers, Syed M. Shahed, Vinod K. Duggal
A heavy-duty 320 kW diesel engine has been converted to natural gas operation. Conversion technology was selected to minimize costs while reaching NOx emissions goals of less than 3.2 g/kW-hr. Two engines are being converted using quiescent and high swirl combustion systems. The first engine with low swirl cylinder heads of the base diesel engine, and a combustion system developed for it was tested on a steady state cycle that has been shown to simulate the US heavy duty transient test cycle. It shows NOx emissions of 2.9 g/kW-hr and total HC emissions of 5.4 g/kW-hr. It is suspected that the HC emission is high because of high valve overlap. Experience with other similar engines suggests that non-methane HC emission is about 0.4-0.8 g/kW-hr. It is also expected that modified valve events and/or an oxidation catalyst can reduce HC emissions to much lower levels. The efficiency of the low swirl natural gas engine at this NOx level is 36 percent at rated condition.
1992-04-01
Technical Paper
920923
Kendall R. Swenson, Syed M. Shahed
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
1994-11-01
Technical Paper
942274
Joseph J. Greenbaum, Michael A. Kluger, Barry E. Westmoreland
This paper presents a discussion on manual transmission torque losses and focuses specifically on the relationship between torque loss, input speed and torque. It also includes a discussion on other factors affecting torque loss, such as inclination angle and lube oil temperature. Manual transmissions used in compact light truck applications have torque losses that are a function of input speed and torque. Efficiency studies done on manual transmissions in the engine-driving mode indicate that torque losses, in other than direct-drive gears, are considerably more dependent on input torque than input speed. It was also observed that efficiency was significantly affected by the inclination angle and lube oil temperature.
1995-11-01
Technical Paper
952585
Cherian Olikara, Joe Steiber, S. M. Shahed
Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
1995-11-01
Technical Paper
952610
Edward A. Bass, Terry L. Ullman, Edwin C. Owens
Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
1995-11-01
Technical Paper
952592
John Bradley, Larry Eckhardt, Frank Sonzala
An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
1993-10-01
Technical Paper
932853
Matthew S. Newkirk, Lawence R. Smith, Patrick M. Merritt
Abstract Development of methodology for diesel hydrocarbon speciation of C12-C22 compounds and the application of that methodology to determine total ozone forming potential of diesel exhaust emissions is an extremely complicated task. Methodology has already been developed for speciating C1-C12 exhaust emissions from engines and vehicles fueled with gasoline, diesel, and alternate fuels. However, very little or no information is available for exhaust speciation of C12-C22 compounds as sampling and analytical constraints make the collection and analysis of the higher molecular weight compounds extremely challenging. Key issues related to the definition of “hydrocarbons” also need to be addressed prior to promulgation of future reactivity-based legislation for diesels (e.g., Which exhaust hydrocarbon compounds actually exist in gas-phase and participate in atmospheric ozone formation?).
1993-09-01
Technical Paper
932429
James J. Polonis, William H. McGinnis, Ismael Martinez
Electromagnetic compatibility (EMC) design considerations have a vital role in the proper functioning of the electronic circuits and systems of a modern off-highway vehicle (OHV). Careful planning is needed in developing the electronic systems that operate the various functions and tasks on these vehicles. Incorporation of EMC in a system design gives that system the quality of reliability; that is, the system will have reduced emissions and be less susceptible to radiated and conducted electromagnetic energy. This paper provides ideas, concepts, and guidelines that the designer of OHV control circuitry can use for incorporation of EMC at the beginning of a design project.
2000-06-19
Technical Paper
2000-01-2001
Imad A. Khalek
Particle number concentrations and size distributions were measured for the diluted exhaust of a 1991 diesel engine during the US FTP transient cycle for heavy-duty diesel engines. The engine was operated on US 2-D on-highway diesel fuel. The particle measurement system consisted of a full flow dilution tunnel as the primary dilution stage, an air ejector pump as the secondary dilution stage, and an electrical low pressure impactor (ELPI) for particle size distribution measurements. Particle number emission rate was the highest during the Los Angeles Non Freeway (LANF) and the Los Angeles Freeway (LAF) segments of the transient cycle. However, on brake specific number basis the LAF had the lowest emission level. The particle size distribution was monomodal in shape with a mode between 0.084 μm and 0.14 μm. The shape of the size distribution suggested no presence of nanoparticles below the lower detection limit of the instrument (0.032 μm), except during engine idle.
2000-06-19
Technical Paper
2000-01-1912
Paul W. Schaberg, Ian S. Myburgh, Jacobus J. Botha, Imad A. Khalek
Comparative exhaust emission tests were performed with five diesel fuels, namely a Sasol Fischer-Tropsch diesel, a fuel meeting the CARB diesel fuel specification, a fuel meeting the US 2-D diesel fuel specification, and two blends of the Fischer-Tropsch diesel and the 2-D diesel. Hot-start and cold-start heavy-duty transient emission tests were performed using a 1999 model year DDC series 60 engine. Regulated exhaust emissions with the Fischer-Tropsch diesel were significantly lower than with the 2-D and CARB diesel fuels, in both the hot-start and cold-start tests. When compared with test results obtained previously with a 1991 engine, it was found that the reduction in NOX with the Fischer-Tropsch fuel was smaller in the 1999 engine, while the reduction in PM was greater.
2001-03-05
Technical Paper
2001-01-1327
Steven G. Fritz, Chad R. Bailey, Carl A. Scarbro, Joesph H. Somers
Criteria pollutants were measured from ten Class 7 and 8 (i.e., gross vehicle weights > 33,000 lb) heavy-duty diesel trucks with engine model years between 1953 and 1975. The data was used by EPA to estimate that period's particulate matter emission rates for these type engines and will be used to develop dose response relationships with existing epidemiological data. Particulate samples were analyzed for sulfate and volatile organic fraction. Carbon soot was estimated. The trucks had particulate emissions of 2 to 10 g/mi as compared to 1 to 6 g/mi for trucks with model year engines from 1975 through the mid-1980s, and less than 1 g/mi for post-1988 trucks.
2002-03-19
Technical Paper
2002-01-1433
Glenn R. Wendel
The design and selection of a hydraulic system for a particular machine is based upon a variety of factors which include: functionality, performance, safety, cost, reliability, duty cycle, component availability, and efficiency. With higher fuel costs and requirements to reduce engine exhaust emissions, new hydraulic system configurations should be considered. Traditional hydraulic systems conssume an excessive amount of energy due to metering losses. A single pump usually supplies flow to multiple functions, with differing flow and pressure requirements resulting in excessive metering losses. The energy of mass and inertial loads is usually dissipated by metering losses. Opportunities exist for reducing metering losses by the use of multiple pumps and by using hydrostatic control of individual functions. Hydrostatic control also allows for energy recovery when used in conjunction with an energy storage system.
2002-03-19
Technical Paper
2002-01-1417
Bapiraju Surampudi
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
2002-11-18
Technical Paper
2002-01-3048
Paul Skalny, David Powell, Scott McBroom
The U.S. Army's National Automotive Center has contracted with Illinois Institute of Technology Research Institute (IITRI), Southwest Research Institute (SwRI), and Advanced Propulsion, LLC, to evaluate the effects on fuel consumption and logistics that would result from hybridizing the powertrains of the Army's tactical wheeled vehicle fleet. This paper will outline the approach taken to perform that evaluation and present a synopsis of results achieved to date.
1998-10-19
Technical Paper
982491
Thomas W. Ryan, Janet Buckingham, Lee G. Dodge, Cherian Olikara
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
1986-10-01
Technical Paper
861538
Shannon Vinyard, Daniel Dickey
A heavy duty (150 kW) diesel engine was tested to determine operational problems while running on minimally processed synthetic fuels. A reference No. 2 diesel fuel was compared with liquid products derived from shale, tar sands, and coal. Information on the engine setup and test procedure is presented. The test results include engine power, thermal efficiency, ignition delay, gaseous and particulate emissions, smoke opacity, cylinder pressure, and heat release data. Cold start data at 0°C and −20° C and idle deposit test results are also presented. These data should help to determine future engine modifications to enhance synfuel engine performance.
1980-10-01
Technical Paper
801371
Harry E. Dietzmann, Mary Ann Parness, Ronald L. Bradow
Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Viewing 1 to 30 of 69

Filter

  • Range:
    to:
  • Year: