Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

An In-cylinder Laser Absorption Sensor for Crank-angle-resolved Measurements of Gasoline Concentration and Temperature

2010-10-25
2010-01-2251
Simultaneous crank-angle-resolved measurements of gasoline concentration and gas temperature were made with two-color mid-infrared (mid-IR) laser absorption in a production spark-ignition engine (Nissan MR20DE, 2.0L, 4 cyl, MPI with premium gasoline). The mid-IR light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug. The absorption line-of-sight was a 5.3 mm optical path located closely adjacent to the ignition spark providing spatially resolved absorption. Two sensor wavelengths were selected in the strong bands associated with the carbon-hydrogen (C-H) stretching vibration near 3.4 μm, which have an absorption ratio that is strongly temperature dependent. Fuel concentration and temperature were determined simultaneously from the absorption at these two wavelengths.
Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

Effect of Post Injections on In-Cylinder and Exhaust Soot for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2010-04-12
2010-01-0612
Multiple fuel-injections during a single engine cycle can reduce combustion noise and improve pollutant emissions tradeoffs. Various hypotheses have been proposed in the literature regarding the in-cylinder processes responsible for the pollutant emissions improvements. This paper provides a brief overview of these hypotheses along with an investigation exploring which of these mechanisms are important for post injections under low-temperature combustion (LTC) conditions in a heavy-duty diesel engine. In-cylinder soot and exhaust smoke are measured by 2-color soot thermometry and filter paper blackening, respectively. The evolution and interaction of soot regions from each of the injections is visualized using high-speed imaging of soot luminosity, both in the piston bowl and in the squish regions.
Journal Article

Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation

2010-04-12
2010-01-0343
Fuel injection during negative valve overlap offers a promising method of controlling HCCI combustion, but sorting out the thermal and chemical effects of NVO fueling requires knowledge of temperatures throughout the cycle. Computing bulk temperatures throughout closed portions of the cycle is relatively straightforward using an equation of state, once a temperature at one crank angle is established. Unfortunately, computing charge temperatures at intake valve closing for NVO operation is complicated by a large, unknown fraction of residual gases at unknown temperature. To address the problem, we model blowdown and recompression during exhaust valve opening and closing events, allowing us to estimate in-cylinder charge temperatures based on exhaust-port measurements. This algorithm permits subsequent calculation of crank-angle-resolved bulk temperatures and residual gas fraction over a wide range of NVO operation.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Journal Article

Prospects for High-Temperature Combustion, Neat Alcohol-Fueled Diesel Engines

2014-04-01
2014-01-1194
The use of neat alcohols, namely methanol and ethanol, in direct-injection, compression-ignited engines is difficult, most notably due to their poor ignitability. By employing a high-temperature combustion strategy, this challenge may be overcome, thus creating the opportunity for using these oxygenated and inherently low-sooting fuels for heavy-load applications. Experimental data are provided from a single-cylinder research engine that shows particulate matter (PM) emissions for Diesel-style combustion of both methanol and ethanol that are below the current US Government regulation limit. The level of particulates remained low up to stoichiometric ratios of fuel and air. A complete emissions analysis indicates a high combustion efficiency of ∼ 96% at stoichiometric conditions. In order to achieve reliable combustion, some form of intake-air preheating was required.
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

2011-04-12
2011-01-1291
Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Journal Article

Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller

2013-04-08
2013-01-0681
The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics.
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

Adaptation of a Variable Displacement Vane Pump to Engine Lube Oil Applications

2007-04-16
2007-01-1567
Variable valve actuation has become a very popular feature in today's engines. With many of these systems being hydraulically actuated, the engine lubrication system requires enhancement to support their function. To expand the system's operational range with respect to speed and temperature, a traditional solution has been to increase oil pressure by increasing pump displacement. To better optimize the system, a variable displacement vane pump has been adapted to the engine lube oil system. Based on existing transmission pump technology, a pivoting cam ring design is employed that is able to vary the pump's displacement as a function of pump regulating oil pressure which in-turn provides a net reduction in its drive torque. While others have addressed this issue using complex and expensive pressure regulating systems, this passive solution requires no valves or additional hardware.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
X