Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Handling Comparison of Vehicles with Steerable Auxiliary Axles

2013-09-24
2013-01-2353
Self-steered or caster steered axles are commonly used to support load on multi-axle commercial vehicles. Such axles can allow more payload to be hauled in some vehicle configurations under the existing bridge formulas. These self-steered axles cannot generate a side load, and serve to unload surrounding fixed axles that do generate lateral forces to turn the vehicle with payload. Since the tire's ability to generate a side load is dependent upon its load, the use of caster-steered auxiliary axles can upset the balance (or the understeering) properties of the vehicle. This work will define the effect of adding a caster steered auxiliary axle and compare it with a steerable axle that positively controls the steer angle and thereby generates a lateral force. This work assumes the reader has a basic knowledge of the well publicized “bicycle” model, and particularly its extension to multi-axle vehicles.
Journal Article

Integration of Lane Keeping Assistance with Steering

2013-09-24
2013-01-2389
A novel speed and position dependent Lane Keeping Assistance (LKA) control strategy for heavy vehicles is proposed. This LKA system can be implemented with any torque overlay system capable of accepting external position or torque commands. The proposed algorithm tackles the problem of lane keeping in two ways from a heavy vehicle's perspective. First, it stabilizes the vehicle's lateral position by bringing it to the center of the lane and giving it the correct heading to stay there. This is done using a speed and position dependent control strategy that becomes less aggressive as the vehicle's speed increases and as it gets closer to the center of the lane. Such speed and position dependency is especially critical in heavy vehicles where unnecessary aggressive control can lead to oscillations about the lane's centerline when cruising at high speeds.
Journal Article

Improved Lane-keeping with Rear Axle Steer

2015-04-14
2015-01-1584
The classic two-degree-of-freedom yaw-plane or “bicycle” vehicle model is augmented with two additional states to describe lane-keeping behavior, and further augmented with an additional control input to steer the rear axle. A simple driver model is hypothesized where the driver closes a loop on a projected lateral lane position. A rear axle steer control law is found to be a function of front axle steering input and vehicle speed that exhibits high speed stability and improved low speed maneuverability. The theoretically derived control law bears similarity to practical embodiments allowing a deeper understanding of the functional value of steering a rear axle.
Journal Article

Tire Wear Improvement by Steering a Third Axle

2011-09-13
2011-01-2148
The conventional rear tandem axle of a three-axle vehicle produces a yaw resisting moment that adversely impacts vehicle performance. This work examines the effect of steering the rear axle on tire wear. Using actual vehicle test data, a tire wear model is developed. This tire wear model is then used to predict tire wear savings over an actual commercial vehicle duty cycle when the rear axle is steered. The result of this projection is shown to be consistent with reported third party field experience.
Technical Paper

Vehicle Performance Improvement by Steering a Third Axle

2010-10-05
2010-01-1890
The conventional rear tandem axle of a three-axle vehicle produces a yaw resisting moment that adversely impacts vehicle performance. This work examines the steady-state handling effect of steering the rear axle of a three-axle vehicle in terms of equivalent wheelbase and understeer. It is found that a very simple rear axle steer control strategy improves both the equivalent wheelbase and understeer. The equivalent wheelbase of the rear axle steered vehicle calculated from vehicle performance data equals the intuitively expected kinematic result. Finally, improvement in tire wear by steering the third axle is reported.
Technical Paper

Steering System Effects on On-Center Handling and Performance

1999-11-15
1999-01-3765
This paper reviews activities relating to understanding, and improving the on-center performance of heavy truck steering systems. Initially, the on-center steering performance characteristics for commercial vehicles were quantified. Steering wheel torque and angular position were the prime measurables. Graphical analyses of the on-center handling data were performed. To better understand the data, and to insure statistical significance, an algebraic model of the analyzed data was developed, with confidence intervals determined. The calculated system stiffness, as determined from the steering wheel data, was found to be a key discriminator between steering gears. System stiffness is a function of several component values, which were measured in the laboratory. Finally, to test the above findings, a correlation study of subjective driver impressions with measured steering gear characteristics and objective vehicle measures was performed.
Journal Article

Directional Dynamics of Steering the Third Axle

2015-09-29
2015-01-2747
With the expectation that means of redundant steering will be necessary for highly autonomous vehicles, different methods of providing redundant steering can be considered. One potential for redundancy is to steer the rear axle for directional control of the vehicle in the event of a failure in the primary steered front axle. This paper will characterize the dynamics of directional control of a three-axle vehicle when steered at the rear, and compare it to a conventionally steered three-axle vehicle. Several compensators are suggested that allow similar vehicle dynamic behavior when steering the rear axle as a driver would expect when steering the front, giving hope that a steerable rear axle can provide acceptable redundancy for a failed primary steering system on the front axle.
X