Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Complex Eigenvalue Analysis and Brake Squeal: Traps, Shortcomings and their Removal

2012-09-17
2012-01-1814
Among many NVH problems brake squeal continues to be a difficult topic for design engineers and scientists. Both the experimental and the simulation approaches so far have failed to provide robust and reliable guidelines for the design of squeal free brakes. On the experimental side the problem clearly lies in the wide range of operating conditions which the brake encounters in its lifetime, in which it should be squeal free. From lab experiments alone, it is hardly possible to judge how far the system is from squeal, which implies that an extremely wide range of conditions is mandatory. Brake squeal simulation presents different challenges. Once a model for the brake has been formulated, including the excitation mechanism(s), it should be possible to check the robustness of a given design and system parameters against squeal. Complex eigenvalue analysis has become a standard industrial tool for squeal prediction, and is routinely applied to the simulation models.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

On the Relation between Rotor Asymmetry and Brake Squeal

2010-10-10
2010-01-1692
The squealing of disk and drum brakes is still a major problem to design engineers. It has been observed by Fieldhouse and others that the introduction of asymmetries into the brake rotor can lead to a reduction of brake noise. However this insight has not yet solved the squeal problem. One reason for this is that it is not a priori obvious which kind of asymmetries of the rotor are preferable and which ones are not. This lack of knowledge most likely originates from the fact that most models explaining disk brake squeal rely on a symmetric rotor. In this paper, models for disk brake squeal are presented which are suitable to study asymmetric brake rotors. The excitation mechanism for squeal is explained by the formulation of a stability problem. It is shown that multiple eigenfrequencies of the rotor make it extremely sensitive to self-excited vibrations, i.e. squeal.
Technical Paper

An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise

2017-06-05
2017-01-1904
Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
Technical Paper

On Criteria for the Robust Design of Squeal Free Brakes

2012-09-17
2012-01-1816
The goal of constructing squeal free brakes is still difficult to achieve for design engineers. There are many measures that are beneficial to avoid or decrease brake squeal, examples are the increase in damping and the introduction of asymmetries in the brake rotor. For an efficient design process these measures have to be quantified. This is difficult due to the high complexity of the system which is caused by the contact conditions and the complicated properties of the pad material which consists of a vast amount of different components. The attempt presented in this paper is to use fundamental models of the excitation mechanism for brake squeal in order to quantify the rate of asymmetry and damping required to get far away from the squeal boundary. The relation can be helpful to generate adequate objective functions for a systematic structural optimization of brake rotors against squeal and can be used as a design guideline.
Technical Paper

Frictional Behavior of Automotive Interior Polymeric Material Pairs

1997-05-20
972056
As automotive manufacturers continue to increase their use of thermoplastics for interior components (due to cost, weight, …), the potential for frictionally incompatible materials contacting each other, resulting in squeaks and rattles, will also increase. This will go counter to the increased customer demand for quieter interiors. To address this situation, Ford's Advanced Vehicle Technology Squeak and Rattle Prevention Engineering Department and Virginia Tech have developed a tester that can measure friction as a function of relative sliding velocity during frictional instabilities such as stick slip. The Ford/VT team is developing a polymeric material pairing database that will be used as a guide for current and future designs to eliminate potential squeak concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, an analytical model will be developed as a tool to predict frictional behavior.
X