Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
Technical Paper

Enhanced Low-Order Model with Radiation for Total Temperature Probe Analysis and Design

2017-09-19
2017-01-2047
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for low-order approximate methods, and that is the subject of this paper.
Technical Paper

Verification, Validation and Uncertainty Quantification (VV&UQ) Framework Applicable to Power Electronics Systems

2014-09-16
2014-01-2176
The development of the concepts, terminology and methodology of verification and validation is based on practical issues, not the philosophy of science. Different communities have tried to improve the existing terminology to one which is more comprehensible in their own field of study. All definitions follow the same concept, but they have been defined in a way to be most applicable to a specific field of study. This paper proposes the Verification, Validation, and Uncertainty Quantification (VV&UQ) framework applicable to power electronic systems. Although the steps are similar to the VV&UQ frameworks' steps from other societies, this framework is more efficient as a result of the new arrangement of the steps which makes this procedure more comprehensible. This new arrangement gives this procedure the capability of improving the model in the most efficient way.
X