Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Robust Semi-Active Ride Control under Stochastic Excitation

2014-04-01
2014-01-0145
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
Journal Article

Car-in-the-Loop Complete Vehicle Test Rig

2015-04-14
2015-01-0647
During the last years mechatronic systems developed into one of the biggest drivers of innovation in the automotive industry. The start of production of systems like dual clutch transmission, lane departure warning systems and active suspensions proves this statement. These systems have an influence on the longitudinal, steering and vertical dynamics of the vehicle. That is why the interaction on vehicle level is crucial for an optimal result in the fields of efficiency, comfort, safety and dynamics. To optimize the interaction of mechatronic systems, in this paper a new test rig concept for a complete vehicle is presented. The so-called Car-in-the-Loop-concept is capable of realistically reproducing the loads, which act on the powertrain, the steering and the suspension during a test drive.
Technical Paper

A Methodology for Laboratory Testing of Truck Cab Suspensions

2009-10-06
2009-01-2862
This work pertains to laboratory testing of truck cab suspensions for the purpose of improving in-cab ride quality. It describes the testing procedure of a complete truck cab suspension while still being mounted on the vehicle. It allows for testing with minimal amount of resources, limited to two mobile actuators and minimal modifications to the stock vehicle. The actuators can be attached to any axle through a set of modified brake drums and excite the drive axle in a vertical plane. The excitation signal sent to the actuators can be in phase for a heave type motion or out of phase for a roll motion. The chassis shock absorbers are replaced with rigid links to prevent the actuator input from becoming filtered by the primary suspension. This allows the input to reach the cab suspension more directly and the cab to be excited across a broader range of frequencies.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

Performance Characterization and Modeling of Shim Stack Assemblies in Vehicle Shock Absorbers

2010-10-05
2010-01-1904
A detailed study of the effects of shim stack assemblies on performance of hydraulic mono-tube vehicle shock absorbers is presented. Currently, shim stacks are modeled as blow-off valves in hydraulic models of shock absorbers. Using this simplification, important material and geometrical properties of shim stacks cannot be studied and their effects cannot be understood on overall damper performance. In this paper, shim stack deflection is investigated and a mathematical model is presented for shim stack deflection. This model is then incorporated into the mathematical model of a hydraulic damper and various properties of shim stack and their effects on damper characteristics are studied. Energy and variational methods were used to develop the mathematical model of the shim stack. The mathematical model also takes into account the sliding effects of the shims on each other when the shim stack is deflected.
Technical Paper

Analysis and Control of Displacement Transmissibility and Force Transmissibility for a Two DOF Model Based on Quarter Car Concept using a Mixed Mode Magnetorheological Fluid Mount

2010-10-05
2010-01-1911
The chassis are subject to both road profile and engine or pump/motor vibration when a vehicle is moving on the road. The suspension is developed to reduce the effect of the road conditions to the chassis. The vibration from engine or pump/motor of hydraulic hybrid vehicles (HHV) will be also transmitted to the chassis and needs to be isolated. A mixed mode magnetorheological (MR) fluid mount is presented to isolate force vibration for a two degree of freedom (DOF) model based on quarter car concept. The MR fluid mount is designed to work in flow mode and squeeze mode separately and simultaneously. The skyhook control for the MR fluid mount is also been designed and simulated. Both displacement transmissibility and force transmissibility for each mode and for combined modes have been obtained. These simulation results present a basis for designing a more effective controller to control both the displacement transmissibility and force transmissibility.
Technical Paper

A Frequency Analysis of Semiactive Control Methods for Vehicle Application

2004-05-04
2004-01-2098
The performance of five different skyhook control methods is studied experimentally, using a quarter-car rig. The control methods that are analyzed include: skyhook control, groundhook control, hybrid control, displacement skyhook, and relative displacement skyhook. Upon evaluating the performance of each method in frequency domain for various control conditions, they are compared with each other as well as with passive damping. The results indicate that no one control method outperforms other control methods at both the sprung and unsprung mass natural frequencies. Each method can perform better than the other control methods in some respect. Hybrid control, however, comes close to providing the best compromise between different dynamic demands on a primary suspension. The results indicate that hybrid control can offer benefits to both the sprung and unsprung mass with control gain settings that provide equal contributions from skyhook control and groundhook control.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
X