Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

2017-03-28
2017-01-1259
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

Electric Power Train Configurations with Appropriate Transmission Systems

2011-04-12
2011-01-0942
Referring to the transmission development, three different classifications of the power train are useful. These are the conventional power train with combustion-engined drive of the wheels, the electric power train with electromotive drive of the wheels and the hybrid power train with both types of drive. Due to this division, the micro hybrid belongs to the conventional power train while the serial hybrid is classified with the electric power train. Subdivisions of the electric power train are the decentralized drives near the axle shafts or the wheel hub drive and the central drive with differential. The choice of the electric motor is dependent on different influences such as the package, the costs or the application area. Furthermore the execution of the transmission system does influence the electric motor. Wheel hub drives are usually executed on wheel speed level or with single ratio transmission.
Technical Paper

Reliability Analysis of an Automotive Wheel Assembly

1993-03-01
930406
The incorporation of reliability theory into a fatigue analysis algorithm is studied. This probabilistic approach gives designers the ability to quantify “real world” variations existing in the material properties, geometry, and loading of engineering components. Such information would serve to enhance the speed and accuracy of current design techniques. An automobile wheel assembly is then introduced as an example of the applications of this durability/reliability design package.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Technical Paper

An Adaptive Vehicle Stability Control Algorithm Based on Tire Slip-Angle Estimation

2012-09-24
2012-01-2016
Active safety systems have become an essential part of today's vehicles including SUVs and LTVs. Although they have advanced in many aspects, there are still many areas that they can be improved. Especially being able to obtain information about tire-vehicle states (e.g. tire slip-ratio, tire slip-angle, tire forces, tire-road friction coefficient), would be significant due to the key role tires play in providing directional stability and control. This paper first presents the implementation strategy for a dynamic tire slip-angle estimation methodology using a combination of a tire based sensor and an observer system. The observer utilizes two schemes, first of which employs a Sliding Mode Observer to obtain lateral and longitudinal tire forces. The second step then utilizes the force information and outputs the tire slip-angle using a Luenberger observer and linearized tire model equations.
Technical Paper

Energy Modeling of Deceleration Strategies for Electric Vehicles

2023-04-11
2023-01-0347
Rapid adoption of battery electric vehicles means improving the energy consumption and energy efficiency of these new vehicles is a top priority. One method of accomplishing this is regenerative braking, which converts kinetic energy to electrical energy stored in the battery pack while the vehicle is decelerating. Coasting is an alternative strategy that minimizes energy consumption by decelerating the vehicle using only road load. A battery electric vehicle model is refined to assess regenerative braking, coasting, and other deceleration strategies. A road load model based on public test data calculates tractive effort requirements based on speed and acceleration. Bidirectional Willans lines are the basis of a powertrain model simulating battery energy consumption. Vehicle tractive and powertrain power are modeled backward from prescribed linear velocity curves, and the coasting trajectory is forward modeled given zero tractive power.
Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and Analysis

2015-04-14
2015-01-1231
Improving fuel economy and overall vehicle emissions are very important in today's society with strict new regulations throughout the world. To help in the education process for the next generation of design engineers, this paper seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies. One of the main goals of this research is to maintain a simplified approach to model development. The 1 Hz model described within this work aims to allow energy to be simply and understandably traced through a hybrid powertrain. Through the use of a “backwards” energy tracking method, demand for a drive cycle is found, and, after tracing the energy demand through each powertrain component, the resulting fuel to meet vehicle demand and associated powertrain losses is found.
Technical Paper

Identification of Road Surface Friction for Vehicle Safety Systems

2014-04-01
2014-01-0885
A vehicle's response is predominately defined by the tire characteristics as they constitute the only contact between the vehicle and the road; and the surface friction condition is the primary attribute that determines these characteristics. The friction coefficient is not directly measurable through any sensor attachments in production-line vehicles. Therefore, current chassis control systems make use of various estimation methods to approximate a value. However a significant challenge is that these schemes require a certain level of perturbation (i.e. excitation by means of braking or traction) from the initial conditions to converge to the expected values; which might not be the case all the time during a regular drive.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Journal Article

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-03-29
2022-01-0531
A new and unique electric vehicle powertrain model based on bidirectional power flow for propel and regenerative brake power capture is developed and applied to production battery electric vehicles. The model is based on a Willans line model to relate power input from the battery and power output to tractive effort, with one set of parameters (marginal efficiency and an offset loss) for the bidirectional power flow through the powertrain. An electric accessory load is included for the propel, brake and idle phases of vehicle operation. In addition, regenerative brake energy capture is limited with a regen fraction (where the balance goes to friction braking), a power limit, and a low-speed cutoff limit. The purpose of the model is to predict energy consumption and range using only tractive effort based on EPA published road load and test mass (test car list data) and vehicle powertrain parameters derived from EPA reported unadjusted UDDS and HWFET energy consumption.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
Technical Paper

Performance Measurement of Vehicle Antilock Braking Systems (ABS)

2015-04-14
2015-01-0591
Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
X