Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Technical Paper

Strategies to Define Surrogate Fuels for the Description of the Multicomponent Evaporation Behavior of Hydrocarbon Fuels

2018-09-10
2018-01-1692
The scope of this work is to propose a methodology to define multicomponent surrogate mixtures which describe the main evaporation characteristics of real gasoline fuels. Since real fuels are commonly complex mixtures with hundreds or thousands of hydrocarbons, their exact composition is generally not known. Only global characteristics are standardized. An accurate modeling of such complex mixtures in 3D-CFD requires the definition of a suitable surrogate. So far, surrogate mixtures have mostly been defined based on their combustion properties, such as ignition delay or burning velocity, irrespective of their evaporation characteristics. For this reason, in this work, a systematic study is carried out to develop a methodology to define mixtures of representative components that mimic the evaporation behavior of real fuels.
X